

MSc in Computer Science 2020-21

Project Dissertation

Project Dissertation title: Developing robust machine learning models for off-
target prediction in CRISPR/Cas9 gene editing using ensemble learning and feature
space analysis

Term and year of submission: Trinity Term 2021

Candidate Number: 1047337

Word Count: 21,938

Developing robust machine
learning models for off-target

prediction in CRISPR/Cas9 gene
editing using ensemble learning

Candidate Number: 1047337

University of Oxford

A thesis submitted for the degree of

MSc in Computer Science

Trinity 2021

Abstract

CRISPR/CAS9 is the genetic engineering technology bringing about in-

credible advances in our ability to address today’s most serious medical

challenges. The technology is built on the capability of guide ribonucleic

acids (gRNAs) to identify precisely the parts of the genome to edit. Inad-

equately designed gRNAs can lead to wrong selection in the genome with

often catastrophic effects. The mission for effective guide design has to

go beyond preferring guides with high activity at the correct target site

but must also include a minimisation of risk when it comes to increasing

specificity. While off-target prediction is more challenging than the on-

target scenario, we show that the robustness of ensemble learning can

provide good predictive performance and outperform existing procedu-

ral methods. Furthermore, we develop novel deep learning architectures

that can learn from pairs of sequences and identify the levels of off-target

activity. We implement classification models that, for the first time, at-

tempt to separate validated experimental off-targets from inactive cases.

We also investigate the different features defining the specificity of gR-

NAs so that future guide design can include these attributes in creating

more mistake-resilient guides. All of the investigations were completed

on the recently released comprehensive CrisprSQL dataset.

2

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Aims and Objectives . 10

1.3 Structure . 12

2 Background 16

2.1 Genomics . 16

2.1.1 Nucleic Acids . 18

2.1.2 Gene Editing . 20

2.1.3 Procedural Activity Scores . 22

2.1.3.1 MIT . 23

2.1.3.2 CFD . 24

2.1.3.3 CROP-IT . 25

2.1.3.4 CCTop . 27

2.1.4 Data: CrisprSQL . 28

2.2 Machine Learning . 30

2.2.1 Data Representation . 32

3

2.2.2 Classical Machine Learning Models 33

2.2.2.1 Linear and Polynomial Regression 33

2.2.2.2 Support Vector Machines 35

2.2.2.3 k-Nearest Neighbours 37

2.2.2.4 Logistic Regression 39

2.2.3 Neural Networks . 40

2.2.3.1 MLP . 42

2.2.3.2 CNN . 45

2.2.3.3 BGRU . 46

2.2.4 Training . 49

2.2.5 Overfitting . 53

2.2.6 Metrics . 55

2.2.7 Hyperparameter Tuning . 57

2.2.8 Shapley Values . 59

2.2.9 Ensemble Learning . 61

3 Methodology 63

3.1 Datasets for CRISPOR Reproducibility 63

3.1.0.1 Hsu et al. 2013 . 64

3.1.0.2 Cho et al. 2014 . 64

3.1.0.3 Frock et al. 2015 . 65

3.1.0.4 Tsai et al. 2015 . 65

3.1.0.5 Kim et al. 2015 . 66

3.1.0.6 Wang et al. 2015 . 66

4

3.1.0.7 Ran et al. 2015 . 67

3.1.0.8 Kim et al. 2016 . 67

3.2 Base Models . 67

3.2.1 Procedural Scores and CrisprSQL Processing 67

3.2.2 Deep Learning Models . 73

3.2.2.1 LinnFNN3 and Linn 74

3.2.2.2 BGRU and 2BGRU 77

3.3 Meta-Model Ensemble Selection and Hierarchical Models 81

3.4 Implementation . 89

4 Results 94

4.1 Procedural Scores and Ensemble I . 95

4.1.1 Architecture I . 96

4.1.2 Architecture II . 97

4.1.3 Architecture IV . 98

4.1.4 Shapley Values . 101

4.2 Procedural Scores and Ensemble II 102

4.3 Robustness to Nonvalidated Samples I 104

4.4 Deep Learning Models . 106

4.5 Deep Learning Models and Ensemble I 111

4.6 Deep Learning Models and Ensemble II 113

4.7 Robustness to Nonvalidated Samples II 115

4.8 Binary Classifier and Hierarchical Model 121

5

5 Discussion 123

5.1 Procedural Scores and Ensembles . 123

5.2 Deep Learning Models . 127

5.3 Robustness to Nonvalidated Samples 129

6 Conclusions 131

A Appendix 134

References 151

6

Introduction

1.1 Motivation

CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) is a pop-

ular and powerful technology initially derived from the immune system response

of bacteria that allows for gene editing mechanisms like the insertion, deletion, or

replacement of specific genomic fragments [1]. The technology can be used to edit

or remove genes with malignant traits allowing for personalised genetic treatment,

prevent harmful mutations in human embryos, and push the limits of research by

studying the interplay between phenotype and genetic variation [2, 3]. This gene

knockout technology has been applied across various cell types and organisms and

several databases have been created to aggregate the data produced by numerous

binding and cleavage studies.

CRISPR/Cas9 is based on three components to accomplish gene editing: Cas9

(CRISPR-associated endonuclease) protein, guide RNA (gRNA or sgRNA), and

PAM (protospacer adjacent motif) [4]. The steps in the gene-editing process are

7

visualised in Figure 1.1 below and consist of:

1. The synthetic guide RNA (sgRNA) forms a ribonucleoprotein complex with

the Cas9 protein to guide it to the target binding site on the DNA. The sgRNA

is user-defined which means that just by changing the sequence of the sgRNA,

one can change the genomic target to be edited;

2. Before Cas9 can bind, the target sequence needs to have a complementary

PAM site (2-6 bp) downstream to act as a signal to the protein it is binding

in the right place. Since different Cas9 proteins have different matching PAM

sites, complementarity needs to happen between sgRNA and the DNA on one

side, and between Cas9 and PAM on the other. The Cas9 then performs its

endonuclease activity by cutting the target DNA 3-4 bp upstream of the PAM

site resulting in a double-strand break (DSB);

3. The DSB is repaired by one of two pathways:

(a) The error-prone non-homologous end joining (NHEJ) causing a few nu-

cleotide deletions or insertions at the DSB site

(b) The high-fidelity homology-directed repair (HDR) can insert a lot more

nucleotides or even fluorescent tags which makes it a highly utilised path-

way for insertions

4. After the repair, the edited DNA is once again one molecule with the only

difference being the genetic edits just made;

8

Figure 1.1: Steps for CRISPR/Cas9 Gene Editing [5]

Despite specific DNA sequences being aimed, when the matching occurs between

sgRNA and the target DNA, mismatch sites might appear leading to unwanted

cleavage of DNA, or off-target cleavage. This behaviour can result in off-target

mutations and unintended edits with significant consequences on genomic stability

while increasing the risk of disease in the organism which is why it is one of the

most pressing challenges in CRISPR/Cas9 clinical applications [6]. Researchers have

experimentally struggled with identifying which sgRNA will be the most efficient due

to the multitude of factors to be considered. To appropriately address these hurdles,

9

prediction algorithms can be applied to preemptively detect mismatch sites and loci

and help choose specific sgRNA sequences accordingly based on their predicted off-

target profiles.

1.2 Aims and Objectives

The development of off-target prediction methods has shown promise in identifying

the off-target profile of the sgRNA beforehand to minimise their wrongful effects

(high specificity). Some tools predict off-target cleavage efficacy by using scores like

CFD and MIT and then comparing them to whole sgRNA off-target detection meth-

ods like GUIDE-seq without using any learning-based approaches [7]. Researchers

have recently moved to use machine learning and statistical methods to identify the

best possible sgRNA matching for the aimed DNA target sequence. Existing work

includes CRISPOR, CRISPR ML, DeepCRISPR, and a variety of gradient boosting

trees and feed-forward neural networks applied on the mentioned datasets [6, 7].

Because of the exhaustive computational experiments done on these standard datasets

and the variations in performance across different models, research needs to move

to more comprehensive and updated datasets in the hopes of finding agreement

on the factors impacting guide efficiency. Challenges in applying machine learn-

ing effectively to this prediction task include using newer and more comprehensive

datasets, data heterogeneity, and finding factors that determine sgRNA efficiency to

guide more optimal design. With the publishing of crisprSQL, a standardised and

comprehensive dataset quantifying off-target effects along several cell lines using ap-

10

propriate annotations, state-of-the-art cleavage prediction algorithms can be applied

to a large and consistent dataset [8]. Furthermore, the choice of feature selection,

as well as mapping, can have a sizeable effect on the predictive capabilities of the

models, thus identifying optimal subsets of features using ensemble-based methods

can not only improve model performance but can also lead to interesting observa-

tions in the feature space which can help identify these factors important for good

guide sequence design [9].

Thus, the aims of the project are as follows:

1. Data processing of the new CrisprSQL dataset with application of existing

procedural models in off-target score prediction on this novel dataset and im-

provement of predictive performance through ensemble learning;

2. Apply feature importance and explainability methods to these ensembles and

observe which procedural scores are more important to specificity;

3. Implement and compare existing state-of-the-art deep learning models on the

sequence pairs directly in this dataset with and without using procedural scores

and compare them to two of our proposed architectures;

4. Determine the resilience of the different ensemble and deep learning models

to experimentally nonvalidated samples and propose a robust model capable

of generalisation with up to an order of magnitude more inactive sites in the

dataset;

5. The end goal being that given a proposed guide RNA and a random target site,

11

the hierarchical system proposed will be able to reasonably separate whether

the target site will be active, and then, if so, what levels of activity should be

expected in the case of off-targets (specificity);

1.3 Structure

The dissertation or thesis is structured into 6 sections according to the guidance

provided by the Department of Computer Science, but whose internal structure al-

lows for more thematic and conceptual ordering respectively.

The first section being Introduction, where the motivation or problem statement

can be found laying out the reasons for pursuing the topic and the relevance of the

solutions that will be proposed in the dissertation. The aims and the objectives

outline in bullet-point structure the main points that were achieved in the project

in the respective conceptual order.

The Background section contains the fundamental knowledge needed to under-

stand the complexities of the ideas studied in the dissertation project as well as

the key concepts drawing from existing literature and completed work in the area

of machine learning for genomics. The section is divided into two parts: genomics

and machine learning. This is to create a more systematic approach to two different

areas of knowledge while also allowing for discussion on the overlap near the end of

the two parts. The genomics part explains terms that will be used throughout the

dissertation and that need to be understood for complete awareness of the context

12

of the problem as well as proposed solutions. This part will also lay out existing

efforts that have been achieved by the research community in tackling the off-target

effects problem through procedural and not learning-based methods. Finally, since

the dissertation built on the relatively recently published CrisprSQL dataset, a short

commentary on the background of the database and the collection methods used to

gather experimental data is of high importance to understanding subsequent anal-

yses of results obtained from the dataset.

The second part of the background or review section concerns machine learning

concepts and tools that have been employed in the fulfillment of the dissertation’s

aims. The part starts with the overall machine learning problem separation be-

tween regression and classification which have been used in this project to solve

different aspects of the challenge and are sometimes used in combination in a sys-

tems approach, as we will see later. Standard regression and classification methods

and their mathematical background will be covered followed by a more involved

explanation of neural networks and their components. Then come general machine

learning approaches to problem solving that involve training, validation tuning, and

crossvalidating results alongside techniques addressing overfitting. Finally, ensem-

ble learning and its conventional implementations (bagging, blending etc.) will be

introduced as a more complex method of combining several machine learning models

into a larger structure for making predictions, as well as referencing explainability

methods like shapley values in estimating feature importance when predicting off-

target effects.

13

The Methodology section will go into more details on the methods applied in the

project as well as their comparative value and the trajectory taken in designing and

implementing several solutions respectively.

The Results section contains the performance measures of the different models

applied on their respective problems, the comparisons to each other and existing

approaches, and several visualisations to aid with prediction results as well as ex-

plainability measures.

The next section is the Discussion where the results will be interpreted and anal-

ysed to the fulfillment of some of the research questions posed in the Introduction.

There will also be reflection on the limitation of the results and questions coming

from the problem definition and context.

The Conclusion is the last questions that will reiterate the important takeaways

of the project and its results alongside a few ideas on the future work and direction

that can be taken to continue addressing the wider complexities of the challenges

studied here as extensions of our work.

The Appendix will contain extraneous detail concerning validation plots of various

models and their hyperparameter tuning. Results considered tangential to the cen-

tral questions of the project will also be found there in table format. The references

14

are at the end and they follow the IEEE citation format.

15

Background

2.1 Genomics

The genome is the entire collection of an organism’s genetic material where genomics

is the science of studying that material, its structure, and properties. The entirety of

the genetic material is contained in chromosomes, which consist of chemical objects

called deoxyribonucleic acids (DNAs) that through their double helix structure wind

around nucleosomal beads allowing them a compact spatial representation into what

is chromosomes. The incredible extent to which the packing occurs means that a

typical human chromosome averaging about 4 µm contains almost 80 mm of DNA

if completely extended, something often called chromatin packing. This implies an

average packing ratio of 20,000, meaning that a unique ecosystem exists at the chro-

mosomal level where DNA can not be takes as an isolated unit within the cell’s

nucleus. Any processes at that level, including transcription, translation, and gene

editing, need to consider a multitude of factors that a priori would not have been

considered as relevant [10, 11].

16

In a sense, DNA and its sister molecule, ribonucleic acids (RNA) represent genetic

material that could be understood as information or even data where translation and

transcription are just repeated processes to express that data into functionalisable

output, proteins. As with any data, it can be corrupted and it can be edited. Many

cellular mechanisms exist to guarantee the fidelity of the DNA code as it plays a

crucial importance in an organism’s genetic stability but also in its generationally

reproductive capabilities. Gene editing, on which more will be said later in a sepa-

rate subsection, is built on cellular mechanisms that exist to protect genomes from

adversarial viruses inserting their RNA into the organisms. Using that same mech-

anism to remove selectively sections of DNA for either scientific study or prevention

of diseases rooted in genetic nature, presents the crux of gene editing technology

like CRISPR that still, however, can make mistakes and lead to off-target effects.

The study of these effects both in the long and short term has led to the creation

of a separate discipline within genomics, underscoring the immense clinical impor-

tance of adequate study of this phenomenon [12]. Understanding what leads to

an increased chance of these effects, thus, requires a broader understanding of the

genetic background of these processes that the subsequent sections will attempt to

explore, especially in the context of biological factor importance which might have

a direct relationship to the identified feature importance in the machine learning

models we later develop [11].

17

2.1.1 Nucleic Acids

Before continuing to the discussion on the specifics of gene editing technology, it is

wise to reference to fundamental concepts like nucleic acids whose abilities to pre-

serve information, be copied, and to mutate are the conceptual building blocks of the

technology. Nucleic acids are macromolecules strung together from smaller building

blocks called nucleotides that in turn consist of a five carbon sugar, a phosphate

group, and an aromatic base. The aromatic bases include adenine (A), guanine

(G), cytosine (C), thymine (T), and uracil (U), and depending on the ordering of

these bases and the nucleotides in the linear sequences that make up the DNA,

the DNA gets its unique genetic code seen often as a representation of the entire

molecule. This sequence is what determines the uniquness of the DNA molecule

and the genome at large, as well as containing the information used by the cel-

lular mechanisms to create specific proteins and undertake specifically instructed

processes. The key differences between DNA and RNA is that the sugar is a de-

oxyribose in DNA and a ribose in RNA, as well as that RNA has uracil as a aromatic

base instead of thymine in DNA [11]. A clearer view of the nucleotide structure can

be seen in Figure 2.1 below. The chemical energetic properties of these molecules

is what drives the cellular genetic processes and these specific energies can often

play a part in gene editing experiments, often included as additional features to the

sequences themselves [13].

18

Figure 2.1: Structure of nucleotides [14]

Mutations are permanent changes to the DNA that can occur in various parts, but

for the purposes of this thesis, we will restrict ourselves to mutations in the bases

of the nucleotide, for example, the change of adenine (A) into guanine (G). Some of

these changes end up not having any noticeable effects, while others can prove dis-

ease inducing and lethal. Mutations can occur for a variety of reasons, ranging from

exposure to environmental factors, through inherited traits from parents, to aging.

The types of mutations that exist include single base changes like the one already

mentioned called point mutation, deletions/insertions/duplications, translocation or

the movement of a segment of DNA in the genome, and inversions or flips [15]. Not

too much detail will be expunged on mutations, suffice to say that gene editing is

fundamentally either intentional introduction of mutations into the genome or the

correction of the same, and that for our limited study of CRISPR in this thesis,

we will be mostly working with experimental data of point mutations and dele-

tions/insertions/duplications.

19

2.1.2 Gene Editing

As alluded to earlier, gene editing is the process by which DNA is edited, inspired

and adapted from existing mechanisms in biology sometimes called nuclease plat-

forms. The early types of platforms included zinc fingers which are zinc ions that

can be fused to DNA cleavage domains and be used for frame shift or translocation

mutations. The more recent example of a nuclease platform is CRISPR–Cas9 which

uses a 100-nucleotide long single guide RNA (sgRNA) to direct the Cas9 protein to

a specific site in the DNA sequence where it should initiate a cut. This system was

adapted from bacterial immune system responses developed to excise viral genetic

material parasitising on the bacteria’s cell machine [16]. A more detailed look at

the mechanism in play can be seen in Figure 1.1 in the Introduction. Through edit-

ing or targeted design of the sgRNA, the CRISPR system can recognise any gene

or genetic sequence. Once CRISPR induced the cut and results in a DNA break,

the break is repaired by either non-homologous end joining (NHEJ) or homologous

recombination directed repair (HDR), resulting in indels (INsertions or DELetions).

The unintended consequences of using CRISPR like mutations and other off-target

effects seem to be more prevalent in cancel cell lines, which further raises the impor-

tance of minimising their occurrence for clinical benefit. Much remains to be learned

regarding the factors at play influencing the off-target effects but it is clear that more

tailored sgRNA design can often help with reducing those negative side-effects [17].

Carefully designing these sgRNAs is sometimes not a deterministic process, but one

20

that requires finding patterns in experimental data showing which sgRNAs lead to

higher specificity. In that sense, powerful data processing methods built on learning

can act as effective tools in recognising latent patterns in sequential data of sgRNAs

and their targets and, consequently, help tune the design process to create sgRNAs

with a reduced likelihood of leading to off-target effects.

To quantify the ”off-target effects”, a measure is used called target cleavage fre-

quency which is nonnegative, 0 if the binding of the sgRNA and the particular

target never happens, and increases depending on how frequently or strongly the

sgRNA selected that specific target. Thus, the cleavage frequency is a two variable

function, dependent on both the sgRNA and the target sequence which should be

as low as possible for all targets except the one specified. The idea of various pro-

cedural and learning methods can be reduced to them learning the mapping from

sequential and other attributes of the data to this frequency, so that pairs or sgRNAs

can be selected that have a priori high cleavage frequency for the intended target,

and low for the unintended off-targets. Often, these off-target scores depend on the

number and position of the mismatches and mismatches closer to the PAM site like

in positions 19 or 20 depicted in Figure 2.2 below can have higher off-target activity.

21

Figure 2.2: CRISPR gene editing at position 18 of target sequence [13]

2.1.3 Procedural Activity Scores

Researchers choose sgRNAs carefully so as to minimise the off-target effects by

using several scoring methods to rank sequences according to specificity. These pro-

cedural scores are not based on any learning but are rather functions of number

of mismatches between the sgRNA and the target sequence, sometimes also being

impacted by the proximity and density of the mismatches to the PAM site. Through

rigorous experimental testing, weights have been deduced on the effect of mismatches

for each possible nucleotide change at each position and different formulas have been

proposed to combine these into a score. Depending on the formula used and the

distribution of weights as a function of position, different scoring methods have been

proposed throughout the years. Some of the most popular off-target scoring tools

include MIT, CFD, CROP-IT, and CCTop which offer a variety of scales and frame-

works to represent off-target activity. All scoring methods besides CCTop include

a penalty for mismatches located close to each other, a density penalty [18]. By

using several tools at once, and not just one, one can gain a broader understanding

of the specificity of the proposed sgRNA which is why we will introduce each of the

22

scoring tools and their respective advantages/disadvantages below.

2.1.3.1 MIT

The MIT specificity score used to be obtainable from an online tool that can be

used to rank guides according to their potential off-target effects. The site has

since been taken down but the underlying methodology can still be reviewed from

the original publication. We implemented our algorithm through a combination of

heuristics deduced from the original paper and an implementation of the score on the

CRISPOR website [18, 19]. It is among the first scoring tools that was developed in

2013 and it relies on simply weighting mismatches depending on the position. The

type of mismatch was not taken into account when the weight matrix was proposed.

What the score is sensitive to, in particular, is the number of mismatches and their

distance to each other (density) [18, 19]. A more detailed look into the 3 components

going into the score can be seen in the equation (obtained from [18]):

score ∝ w · d · 1

n2
(2.1)

Where w is the product of the weights of the positions where mismatches are detected

in the 20bp sequence, d is the penalty for the distance between the mismatches and

is inversely proportional to the average distance between mismatches, and n is the

total number of mismatches for the entire sequence. The weights for the positional

mismatches are greater the closer they are to the PAM site so as to penalise for

mismatches closer to the PAM site found experimentally to impact the specificity to

23

a larger extent than PAM-distal mismatches [19]. The scale of the score is between

0 and 100, with 100 indicating no mismatches between the sgRNA and the target,

with maximum specificity.

2.1.3.2 CFD

Similarly to MIT, the Cutting Frequency Determination (CFD) score is calculated

from the percent activity values from a matrix of penalties based on mismatches of

each possible type at each position within the sequence [20]. The advantage of this

score is that it considers the typing of mismatches and not just their position in the

sequence. For example, mismatches of A:G and G:C will have very different weights

associated with them coming from experimental data indicating correlation between

each type of mismatch and a decrease in off-target activity. The full score is then

just a multiplication of these weights obtained from the matrix for each mismatch,

when there are two or more mismatches, then individual mismatch values are multi-

plied together. There is no separate term for the distance consideration and number

of mismatches like in MIT, it is rather assumed that those factors are implicitly

included in the weight matrix. Another difference is that the PAM sites will also

have a score of their own to be included and they will also be multiplied with the

mismatch score. There is a number of most common PAM sites like NGG and NGA,

and each has their own weighting in the specificity score calculation also based on

experimentally derived correlation between each of the PAMs and off-target activity.

CFD score has been validated with GUIDE-seq and has been shown to be superior

to MIT in several experiments including CRISPOR [21]. Perfect match between the

24

guide and target sequences gets a score of 1 which is the maximum specificity score

[22]. Similarly to MIT, there is no equation per se for calculating the score, rather it

is just a weighted sum of positional mismatches whose weights have been provided

by experimental validation.

2.1.3.3 CROP-IT

CROP-IT was proposed slightly later in 2015 and is meant to outperform the pre-

vious 2 scoring methods by including special penalties for the off-target score in

the case of consecutive mismatches in the sequence. Furthermore, it considers the

chromatin (chromosome material explained in 2.1) structure when assigning speci-

ficity scores, going beyond just looking at the genetic sequences themselves. The

proposition was that including the global chromatin structure of the cell lines in

question would improve the computational performance of the tool and outperform

the previous tools in predicting scores. The researchers also noted that when only

DNA sequence information is used, a small number of experimentally validated Cas9

bindings sites is predicted showing the limitation of relying on sequence data alone.

CROP-IT has been shown to not always be the best performing tool in a variety

of experiments but it certainly does have the advantage of considering attributes

beyond just the sequence when making the specificity prediction [23].

The underlying logic of the tool relies on a computational model where each position

of the gRNA is weighted based on experimental information from multiple sources.

The algorithm can be broken down into the following steps [23]:

25

1. CROP-IT first performs a filtering step whereby only sequences ending with

the PAMs ‘NGG’ or ‘NNG’ are selected. In this way, separate scoring method-

ology can be followed depending on the PAM sequence;

2. To score alignment candidates, the first 20bp (sequences without PAM) are

divided into three segments of 5, 5 and 10 bp. Different mismatch scores are

applied for each of these three segments;

3. Each nucleotide in the 20bp region is compared to the respective nucleotide on

the target sequence. If a match, assign a score si (where i = 1, 2, 3) based on

the segment and if a mismatch, look for a consecutive mismatch. A penalty

–si is assigned when there are two consecutive mismatches, otherwise penalty

si/2 is assigned for a single mismatch. The penalty assignments are based

on observations of the experimental data, where binding intensity was higher

for sequences with smaller number of consecutive mismatches. This shows

that sequences with smaller number of consecutive mismatches are more likely

to be off-target sites and therefore, are given a higher specificity score. The

equation for score calculation is then:

S =
3∑

i=1

[(n× si) + (m× (−si) + k × (−si/2))] (2.2)

Where n is the number of mismatches, m the number of consecutive mis-

matches and k the number of single mismatches.

4. The weights si for each of the 3 segments are provided by the researchers and

they were obtained by non-parametric optimization and they equal s1 = 5,

26

s2 = 70, s1 = 30;

5. In the case of consecutive mismatches belonging to separate segments, the

mean of the penalties for the two segments is considered;

A perfect maximum specificity score of 650 corresponds to no mismatches and out

of all of the tools has the largest scale for the specificity score that will later require

standardisation when combined with the other scores in the input. CROP-IT is also

available as an online tool for free web use [23].

2.1.3.4 CCTop

CCTop is the most recently proposed out of all of the scores considered having

been developed in 2017 and experimentally validated for gene inactivation, non-

homologous end-joining, and homology directed repair which the previous methods

were not. The model runs on a likelihood framework where for each off-target

sequence the probability of the formation of a stable duplex (binding event) is cal-

culated. Based on experimental observations, the researchers concluded that this

likelihood decreases the closer the mismatch is to the PAM site, thus they weigh

their positional mismatches accordingly. The formula used in the model is (obtained

from [24]):

score off−target =


224, if nmismatches = 0

224−
∑

mismatch 1.2pos, otherwise

(2.3)

Where pos is the mismatch position as counted from the 5’ end with the base of the

27

power was deduced experimentally [24] The score is then subtracted from a maxi-

mum of 224. So, in case of no mismatches, it is: 224-0 (and not 1.2 to the power

of 0 because if there are no mismatches the formula is not used). When there are n

mismatches, the score is 224-1.2posn .

2.1.4 Data: CrisprSQL

It might be clear so far that a variety of prediction tools already proposed have

to be experimentally validated and sometimes there is considerable variation in the

data resulting in some tools unexpectedly outperforming others. Due to the popu-

larity of the study of off-target effects, a multitude of cleavage experimental datasets

have been published but without a common standard of formatting or even result

representation. What one research experiment and team designate as ”off-target ac-

tivity” can vary, allowing for ”specificity” to be differently measured across different

experiments. CrisprSQL combines a selection of datasets into a large and com-

prehensive interactive database with over 25,000 sequence pairs and other feature

entries based on cleavage data from 144 gRNAs [8]. Besides sequence pair informa-

tion, CrisprSQL also includes epigenetic factors, meant to represent the atomistic

parameters of the pair duplex. Furthermore, interaction energies are also included

which indicate the levels of free energy of sgRNA folding, which could be another

indicator of the propensity of the sgRNA to bind to off-targets built on the con-

nection between thermodynamic stability of the CRISPR system and gene editing

efficiency [25].

28

To be able to develop and train complex machine learning models, one needs to have

access to large amounts of diverse data for generalisability purposes which is where

CrisprSQL plays a crucial role. Including other features and attributes beyond se-

quence information might play a deciding role in the prediction of specificity as we

have seen in tools like CROP-IT. Another salient attribute of the database is that it

only includes data points which have been experimentally validated in cells, greatly

narrowing down the prediction problem to only in vivo cases [8].

A separate challenge of our project, however, is to investigate the robustness of

our models to maintain sufficient predictive power when exposed to nonvalidated

samples as well, because a priori, the investigator does not know which sequence

pairs will occur in the cell (validated) and which will not. Nonvalidated samples

have nothing to do with and are different from the term ”validation set” present in

machine learning. Here nonvalidated samples represent those data samples whose

label is always 0 because they have not been validated experimentally to show any

off-target or cleavage activity. We introduce significant and increasing levels of data

imbalance by adding a lot more nonvalidated than validated samples in the test re-

porting set to evaluate the models’ generalisability when learned only on validated

samples.

The key output feature of interest is the cleavage frequency but as already men-

tioned, since different experiments had different metrics for the activity, we will

29

assume that across experiments included in CrisprSQL, cleavage frequency mea-

sures the same underlying biological phenomenon. The fundamental concept is that

higher specificity corresponds to lower cleavage frequency for off-target sites, so our

models will need to be able to predict the cleavage frequency for both on- and off-

targets for a given sgRNA, and then allow the user to choose the sgRNA that gives

the highest specificity, i.e. lowest cleavage frequency for possible off-targets.

2.2 Machine Learning

Machine learning is today one of the most used tools for data processing and learn-

ing, meant to take advantage of the large amounts of data accessible in a variety

of applications, and apply powerful algorithms to extraction of patterns for predic-

tive purposes found in the data troves. As Murphy writes in his seminal textbook,

”the goal of machine learning is to develop methods that can automatically detect

patterns in data, and then use the uncovered patterns to predict future data or

other outcomes of interest” [26, 27]. Machine learning can be divided into smaller

conceptual subspaces, depending on the tasks targeted. Thus, a rough separation

of paradigms would be: supervised, unsupervised, and semi-supervised learning. In

supervised learning, the data will have pairs consisting of input and output and the

task is then to learn a mapping from the former to the latter, which is the learning

applied in this project. In unsupervised learning, the data is without outputs, and

the goal is to deduce some interesting structure or attributes of the data. Common

examples include clustering and principal components analysis. Lastly, in semi-

30

supervised learning, the data will be mixed, some having output labels and some

not, leading to the challenge of optimising a learning algorithm that would be able

to learn collaboratively using both types of data [28].

The problems set out in this project will be tackled through supervised learning, i.e.

developing automated models to learn a mapping from some input, usually scores or

genetic sequences or both, to a real-valued or binary output. If the output is real-

valued like predicting target cleavage frequency, then we will resort to regression

techniques, but the second type of problem we face is predicting whether samples

obtained by online tools and those experimentally validated can be discriminated

using classification methods where a binary label of 0 (nonvalidated sample) or 1

(validated sample) is used.

Two key set of machine learning tasks will be undertaken in this project: regression

and classification. Regression methods have been used in statistics for a very long

time before the advanced machine learning we have today was even developed. The

main idea is that the mapping from input to output that is learned is not a deter-

ministic function but that it includes some random error. It is this error that allows

us to model simple linear regression models both deterministically and probabilis-

tically. The response y that is learned can then be represented by an expectation

conditioned on the input:

y = E (y | x1, . . . , xD) + ε = f (x1, . . . , xD) + ε (2.4)

31

Depending on the assumed complexity of the function or underlying probability

distribution of the error, regression models can be linear or polynomial. If the re-

lationship between the inputs and output is taken as linear, then linear regression

will suffice, however, non-linear relationships cannot be captured successfully by

such a simple model, thus basis or feature expansion of the features is undertaken

to increase the dimensionality of the problem into an input space where it can be

modelled as a linear relationship.

Classification is the other type of supervised learning problem, where the mapping

from input is now into a categorical or discrete output space. Common methods here

include generative models like Naive Bayes Classifiers and Discriminant Analysis,

but the popular perceptron-based neural network models are also quite frequently

applied and which will be discussed seperately later on.

2.2.1 Data Representation

Another important concept is that of encodings. The independent variables or fea-

tures do not have to be of the same type, some can be real-valued while other can

be categorical. Encodings offer a framework for transforming categorical input into

numerical representation so that it can be used as input to a learning model. This

will be important for our discussion only when talking about sequential data like

the sequences of the targets and sgRNAs. The most common way to encode the

sequences is to resort to one-hot encoding like in the Figure 2.3 below:

32

Figure 2.3: Encoding schema for sequences [7]

Sometimes, however, the target and sgRNA sequence are not separately used as

input like two separate features but are combined into one feature. An example

is to use the OR logical relations between the two encoded sequences which effec-

tively transforms two features into one while maintaining the dimensionality of the

sequence input [6]. This is less common but some models, including the ones de-

veloped here, utilise this approach to avoid only resorting to siamese networks that

would separately learn from each of the sequence pairs.

2.2.2 Classical Machine Learning Models

2.2.2.1 Linear and Polynomial Regression

The most common regression model is linear regression that can be derived in two

ways, either the function above is taken to be a linear function of independent

variables or regressors, or the expectation can be taken as a mean of the response

probability distribution assumed to be gaussian coming from the error taken as

gaussian first [29]. Either way, the output is understood as:

y = w0 + x1w1 + · · ·+ xDwD + ε (2.5)

33

Where D is the number of dimensions of the data, or the number of features de-

scribing the input space and the error term is ε while the weights of each of the

independent variables or features is represented in the w of the equation. The so-

lution to the above equation is an expression for the weights that can be multiplied

with any input to provide a prediction. Obtaining the closed-form solution can be

done through minimising the residual sum of squares, a square term for the er-

ror between prediction and true values, which depends on the invertability of the(
X>X

)−1
matrix:

wML =
(
X>X

)−1
X>y (2.6)

Using the probabilistic approach relies on the maximum likelihood principle max-

imising the likelihood of the output probability distribution whose prediction ŷnew will

be the same as for the deterministic approach except that now we are able to obtain

confidence intervals in our predictions coming from a quantification of the error term

as a gaussian with a fixed deviation:

ŷnew = wML · xnew

p (ynew | xnew ,wML) = ŷnew +N
(
0, σ2

ML

)
σ2

ML =
1

N
(XwML − y)> (XwML − y)

(2.7)

When the linear relationship assumption will not hold, more complex assumptions

need to be made by expanding the feature space into higher dimensions d. The

input space changes, but the overall model is still linear in the weights:

34

φ(x) =
[
1, x, x2, · · · , xd

]
y = w>φ(x) + ε

(2.8)

A common problem arises called overfitting if the dimensionality is assumed to large

and it fit the training data almost perfectly but the model does not generalise well

to unseen data. More will be said on this topic later and the mechanisms deployed

to reduce overfitting, but suffice to say that through careful tuning of the dimen-

sionality parameter d, polynomial regression models often offer a good solution to

modelling problems too complex to be solved by simple linear regression.

2.2.2.2 Support Vector Machines

Support vector machines were originally conceived as an algorithm for binary classi-

fication, however, their versatility also allows using them for regression, often being

dubbed support vector regression (SVR) instead like in our case [30]. Building on

the discussion from the previous section, the objective function to optimise in linear

regression is the Ordinary Least Squares as a measure of the error between the true

and predicted value on the regression line. For SVR, instead of just minimising the

sum of squares of the error, we have the freedom to choose how much error is ac-

ceptable a priori and find the appropriate regression line. Instead of minimising the

error directly, we instead choose to minimise the l2 norm of the weights w (which

implicitly are inversely proportional to the euclidian distance error of the points to

the regression line) subject to a constraint that puts an upper limit on the error or

tolerance ε [31]. The objective function can then be written as:

35

min
1

2
||w||2 (2.9)

subject to

|yi − wixi| ≤ ε (2.10)

When not all the points can fall into the closest margin determined by the inverse

of the weights despite optimisation (non-separable case), the error for those points

would be too large and hence an inverse penalty needs to be introduced to the

algorithm in the form of slack variables. Assigning slack values ξi to all points

outside of the region of marginal tolerance measuring their distance to the margin

allows us to minimise their occurrence by including a slack term in the objective

function itself:

min
1

2
||w||2 + C

n∑
i=1

|ξi| (2.11)

subject to

|yi − wixi| ≤ ε+ |ξi| (2.12)

The parameter C on the sum slack term above determines our tolerance to having

points be outside of the margin, i.e. allocated error beyond the threshold. C is

a tunable hyperparameter that we will mention more later on when talking about

validation and tuning, but serving initial discussion one can say that setting C to

0 forces the slack to go to 0 and an extension of the margin thereby increasing the

training error but preventing overfitting on the testing data. In this sense, C has a

regularising influence, setting too high of a value can lead to too much slack/narrow

36

margin in the model with the training data given low error but also having low gener-

alisability since predictions can happen far away from the regression line (overfitting)

[32]. Thus, the amount of regularisation and the value of C are inversely propor-

tional and validation tuning is a necessity to minimising generalisation loss.

An advantage of using SVR instead of linear regression is the application of kernels.

Kernels allow basis expansion in algorithms like SVR without the computational

costs of computing feature expansions. The underlying idea called kernel trick allows

doing basis expansion to higher dimensions through a simple dot product of the input

data in the original dimension hopefully leading to a more linear relationship easier

to model in the higher dimensional space [33]. Many kernels exist beyond just the

polynomial including the radial basis function (rbf) kernel:

κ (x,x′) = exp

(
−‖x− x′‖2

2

2σ2

)
(2.13)

Using the RBF or polynomial kernels will allow the SVR to model nonlinear rela-

tionships keeping in mind that greater complexity can come with larger variance

and overfitting where the role of proper tuning of the C parameter comes again into

importance.

2.2.2.3 k-Nearest Neighbours

k-Nearest Neighbours (kNN) is a nonparametric learning model that has found wider

usage in classification tasks but that can be applied in the regression scheme. The

37

concept relies on using the neighbourhood of a point to approximate the prediction

for that specific point [34]. This ’feature similarity’ that is assumed between points

uses a distance metric like euclidean distance to find the k most similar/closest

points to the point of interest and average the output value of those k points which

is then assigned to the specific point. Choosing how many neighbouring points to

consider when allocating a prediction is represented by the k parameter and is usu-

ally tuned through validation. k can have a regularising effect, because choosing too

small a k means that only the closest points are considered which decreases training

error but will not generalise well and hence lead to overfitting.

On the other hand, choosing a large k means that our approximation will be less

reliable and we will have greater training error, but if tuned right to minimise

validation loss, can achieve good generalisation performance [35]. The particular

advantage of the algorithms is its nonparametric nature allowing for simpler com-

putation but taking longer for prediction since it needs to get the distances to all

the points in the dataset first. For large datasets these costs might be too large

to bear but kNN offers a great nonlinear approximation to predictions without the

use of kernels or basis expansion that we have seen in the previous models. And

finally, kNN do not have inherent interpretability like with the feature weights of

linear regression, leaving analysis to be desired when referencing feature importance.

38

2.2.2.4 Logistic Regression

The previous algorithms introduced will be used mostly in the regression scenario

whereas logistic regression is a model for binary classification tasks. We have seen

how in linear regression we can model the output as a conditional Gaussian distri-

bution given the input and weights, a similar discussion pertains to logistic regres-

sion, the main difference being that the output is now represented as a conditional

Bernoulli (discrete binary) distribution. Since Bernoulli requires the input to the

function to be probabilistic, the sigmoid (or logit) function will be used to map the

product of input and weights (which was also used in linear regression hence shared

regression term) into a probability space as seen in the equation below.

p(y | w,x) = Bernoulli(σ(w · x)) (2.14)

σ(w · x) can be understood as the probability that the predicted class label is 1. A

point of elaboration is the prediction threshold, i.e. what the value of σ(w ·x) needs

to be for the point to be classified as 1. The default is usually 0.5 meaning over 50%

that the point is classified as 1 but the threshold is adjustable and can be used to

optimise the algorithm. Logistic regression tries to find a linear decision boundary

to separate the positive from negative class label points in the input space. Like

in the probabilistic interpretation of linear regression, the optimisation of logistic

regression resorts to maximising the likelihood as represented in the equation above.

The optimisation is reduced to minimising the negative log-likelihood derived in the

form below.

39

NLL (yi | xi,w) = − (yi log µi + (1− yi) log (1− µi)) (2.15)

Where µi = σ
(
w>xi

)
. The objective function above mimics a cross-entropy between

the observation yi and the probability of the class estimate µi. Optimising this

objective function can be done using Newton’s method by computing the gradient

and the Hessian of the function:

∇wNLL(y | X,w) =
N∑
i=1

xi (µi − yi) = X>(µ− y)

Hw = X>SX

(2.16)

Since there is no closed-form solution, the weights estimates depend on iteratively

computing the Hessian and the update rule:

wt+1 = wt −H−1
t gt

= wt +
(
X>StX

)−1
XT (y − µt)

=
(
XTStX

)−1
X>St

(
Xwt + S−1

t (y − µt)
)

=
(
XTStX

)−1
X>Stzt

(2.17)

For this reason, this method of weight estimation is referred to as iteratively reweighted

least squares. Similar regularisation and basis expansion discussion as in linear re-

gression pertains here as well.

2.2.3 Neural Networks

Neural networks have been semantically and conceptually inspired by the neural

brain structure found in humans, with the perceptron as the fundamental block of

40

neural networks meant to be a type of artificial neuron that would fire or produce a

1 once a certain weighted threshold is reached. The artificial neuron operates on a

similar procedure as a linear/logistic regression model by taking a linearly weighted

input, summing it, and then applying a non-linear activation (different from logistic

regression) as a prediction output [36]. If the activation function is just the identity

or linear, then the artificial neuron is just a replacement for the linear regression

model. A figure representing this building block of neural networks is in Figure 2.4

below.

Figure 2.4: Artificial Neuron [37]

It can be shown that these artificial neurons can be used to construct logic gates and

further be able to approximate any function that a computer can compute. This

often leads to neural networks being referred to universal function approximators

which sets them apart from the previous models we discussed in their potential

modelling complexity [38]. Using several artificial neurons together in a network

allows exploitation of this universal approximation principle where we are no longer

learning a linear regression line but rather arbitrarily complex fits. Organising these

artificial neurons into structures like layers and referring to them as nodes we arrive

at the first type of neural network: a multilayer perceptron.

41

2.2.3.1 MLP

As the name implies, multilayer perceptrons (MLPs) are just stacks of artificial

neurons connected together in layers whose individual neuron components are often

called nodes. The number of layers and number of nodes per layer can vary across

networks and even within one particular network architecture. The first layer is just

the input layer, the inner layers are referred to as hidden layers as they do not inter-

act with the data, and the last layer is the output layer which where the activation

function determined whether the neural network is undergoing regression or classi-

fication. As for the final activation function, sigmoid is used in binary classification

as it places a projection of values on a probability space with a tunable threshold,

softmax is used in multiclass scenarios, and the identity or linear activation is used

for regression schema [39]. An example of an MLP with one hidden layer and two

hidden units is in Figure 2.5 below.

Figure 2.5: An example MLP [37]

If we assume tanh as the activation function in the hidden layers and sigmoid for the

output layer, then the following equations representing the network can be posited:

42

a1 = z1 = x

z2 = W2a1 + b2

a2 = tanh
(
z2
)

z3 = W3a2 + b3

y = a3 = σ
(
z3
)

(2.18)

The non-linear activations are operations on the inputs and subsequent node in-

puts/outputs that transform those information stimuli akin to basis expansion but

without the increase in the number of features. Thus, a hidden layer of the neural

network is another layer of feature transformation into a space where linear mod-

elling is more apt, and the network is then learning the features of the model instead

of them being provided by humans, often referred to as representational learning.

The parameters of the neural network are learned through a 2 step process: forward

and backpropagation. In forward, a single sample, for example, is given to the input

layer and propagated all the way to the output, where the weights, bias terms,

activation, and pre-activations are calculated and stored for the second step. In

backpropagation, the optimisation of the loss function required updating the weights

of the model so as to reach a loss minimum. Updating the weights means computing

the gradients of the loss with respect to those parameters and making the respective

changes from output layer/loss to the input layer, i.e. backwards. The forward

propagation is a simple calculation implementing the following equations for each

layer:

43

zl = Wlal−1 + bl

al = f
(
zl
) (2.19)

The backpropagation derivatives of the parameters must resort to the chain rule due

to the dependency of the parameters on the previous layers. The update rule for

the weights (here in matrix form for an entire layer) is:

∂`

∂zl
=

∂`

∂zl+1
Wl+1∂al

∂zl

∂`

∂Wt
=

(
al−1 ∂`

∂zl

)> (2.20)

The weights in the model are learned through different optimisation techniques

but the most frequently used is gradient descent which can be stochastic or batch.

Stochastic means that the weight updates occur one data sample at a time, while

batch means that the update happens after a batch number of data samples is pro-

cessed through the network. While stochastic gradient descent has faster gradient

update for large datasets since we do not need to wait for the gradient to be com-

puted after all the data samples have been processed, due to the stochasticity, noise

can be present in the optimisation results preventing faster convergence to a loss

minimum [40]. Batch gradient descent, on the other hand, can be slow if the batch

size is chosen to be too large, and it can also be too noisy and divergent of the

batch is chosen too small. Usually, batch size is also a tunable hyperparameter in

validation.

44

2.2.3.2 CNN

Convolutional Neural Networks (CNNs) are a type of neural network that replace

the node and artificial neuron paradigm with one of matrix convolutional operations

between layers. CNNs have found great success in image analysis and object recog-

nition because they rely on the concept of weight matrices or convolutional layers

being applied to different areas of the input image or matrix allowing for successful

capture of spatial and temporal dependencies in the data. Once the multiplication

of the weights of the convolutional filter and the input matrix is complete, the result

is summed, non-linearly activated, and passed as input to the next layer in the net-

work. This allows the model to learn patches in the image or data as it strides the

convolutional filter along the data matrix. The learning happens when optimising

the loss or objective function for the weights or parameters in these filters while keep-

ing in mind that these weights are shared as the filter moves across the input matrix.

Figure 2.6: An example CNN [41]

Another type of layer is the pooling layer which implements a pooling operation

after the convolutional layer to avoid redundancy being captures as the filter strides

over possibly overlapping patches in the input matrix. Since we pool the weight

45

matrix into a smaller matrix, pooling operations also help with increasing sparsity

and decreasing the parameter size of easily large CNNs. A visual look into the inner

workings of the CNN can be seen in Figure 2.6. As the CNN is also a paradigm of

representational learning, its output is a particular set of features which can then be

passed into an MLP for learning non-linear combinations of those features, whether

for regression or classification with the discussion from the previous section being ap-

plicable. In DNA sequence analysis, once one hot encoding is applied, the sequence

data is effectively transformed into a matrix resembling an image input which makes

it convenient for CNN application [42]. The CNN is then usually used to extract

an efficient feature representation from the DNA sequences and passed on to MLPs

like we have seen previously with the last layer of the MLP determining whether

regression or classification is required.

2.2.3.3 BGRU

We have seen how CNNs are able to extract spatial information in the input data,

but when it comes to sequential or ordered data, recurrent neural networks (RNNs)

are the standard way to go. When there is dependency between the inputs like,

for example, in language modelling, and even perhaps in genetic sequences, RNN

design can take advantage of such structure by a simple recursive operation on the

gradient update [43]. RNNs model conditional probabilities of any sequence member

on the entire history of the preceding members making it seem like an MLP where

the hidden layer is a function of both input and the previous hidden layer for the

previous member as in Figure 2.7.

46

Figure 2.7: An example RNN [37]

The problem, however, is that the dependency on all previous hidden layers for

the gradient update leads to a vanishing gradient due to the long multiplications,

that is, long-term dependencies can be lost as the gradient shrinks backwards in

the sequence for the earlier members. A solution is the gated recurrent unit (GRU)

which consists of two parts: the update and reset gate. An example GRU unit can

be seen in Figure 2.8 below:

Figure 2.8: An example GRU unit [44]

The h stands for the hidden layer and the subscript t-1 means it stores information

for t-1 previous layers, and the z variable is the update gate storing previous infor-

mation and to determine how much of the previous layers needs to be passed. This

helps eliminate the vanishing gradient problem encountered earlier. The reset gate

r determines how much of the past information is to be discarded based on a similar

47

formula as the update gate but with a different weight matrix. Current memory

content is represented by h̃t within which the Hadamard product between the reset

gate and the stored information determines the amount that is discarded. The last

step is the calculation of ht which acts as a vector storing information for the current

unit and passing it down the network and which uses the update gate Hadamard

product with the memory content after reset has been applied to determine how

much is passed down. In this sense, GRUs do not just store and pass down infor-

mation, but they also filter it proactively only keeping relevant information. GRUs

have found great success in sequential data processing, including DNA sequences

with both word-to-vector encodings and one hot encodings with the latter often not

being able to capture the full sequential nature of the data [45].

A specific example of such layers is the bidirectional layers that can be added on

top of a GRU layer which has the limitation that the current sequence member

prediction only takes into account the previous members. In bidirectional layers,

you do not just process sequences from start to end, but in reverse as well. An

example of the logic can be seen in Figure 2.9 below. The backward layer just feeds

the input from the sequence in the reverse order, starting with in the DNA sequence

example from the nucleotide closest to the PAM site. This expands the sequential

learning capabilities of the network by analysing the sequences in two orders instead

of just one.

48

Figure 2.9: Bidirectional layer logic

In the specific case of the GRU, the BGRU layer (Bidirectional Gated Recurrent

Unit) consists of two GRU layers stacked up each learning a different direction of

the sequence allowing learning dependencies in the past as well as in the future [46].

The use of BGRUs in CRISPR target efficacy prediction has not been extensively

researched, and their success with language sequences might imply success with

DNA sequence learning as well.

2.2.4 Training

Different types of models mentioned before have different training procedures. In the

case of linear and polynomial regression, closed-form solutions exist that allow for

deterministic calculation of the weights without an optimisation technique needed

(sometimes gradient descent is used, as described further below). In the polynomial

case, basis expansion just converts the features to a higher dimensional space while

the overall model is still linear allowing for the same solution as in linear regres-

sion to apply. Other non-linear regressors like the SVR algorithm introduced have

their objective function written as a problem for quadratic programming with linear

constraints that is trained through an SMO-type decomposition method assuming

49

KKT conditions [47]. Usually, non-linear regressors like neural networks resort to

gradient optimisation methods to minimise their loss and we have seen that can

happen either one sample, several samples, or all samples at a time [48]. What

is important when training neural networks is that their objective function is not

convex, thus the training process resorts to gradient techniques, and it is hard to

know exactly the details of the local minimum reached. Thus, careful validation and

tuning of the parameters by extensive hyperparameter sweeps is often necessary to

find an appropriate neural network design for each problem.

We have already mentioned that the vanishing gradient occurs in RNNs, but it

applies to the general neural network case as well. Looking at the backward prop-

agation equations in 2.20, we can see that the update for the preactivations is a

product of many consecutive derivatives of the activation function, i.e. for all the

layers after that one. Since these activation functions like in the case of sigmoid

can have a very small value and a small slope, multiplying their derivatives sev-

eral times may cause the gradient update to approach 0. One way to avoid this is

to use Rectified Linear Units (ReLUs) instead of sigmoids for the activation func-

tions as they have non-negative derivatives usually [49]. Another important note

for neural networks is the initialisation of the weights when the first forward pass

is propagated. If all the weights are identically initialised, then they would not be

differentiated during training and the neural network would not learn. Initialising

weights by sampling from uniform or normal distributions is one way to avoid this

[50].

50

Another common concept for all neural network architectures is that of the opti-

miser method. It is true that gradient optimisation is the standard, but different

methodologies exist to adapt the learning rate, introduce the idea of momentum,

and behave differently in the loss optimisation space. A short explanation of these

algorithms is below:

1. Gradient Descent: Traditional neural network optimisation technique also used

sometimes in linear regression when the computation of the closed-form solu-

tion is not feasible. It uses the first order derivatives of the loss function to

approach the local minimum but it can get stuck there and its learning rate is

fixed. Equation where w are the weights, α is the learning rate, b is the bias,

and J is the objective or loss function:

w = w − α∇wJ

b = b− α∇bJ

(2.21)

2. Stochastic Gradient Descent: like gradient descent but the parameters are

updated after every data sample i, thus more frequent calculations are made

and there is more variation in the gradient updates leading sometimes to over-

shooting a minimum [40]. Equation:

w = w − α∇wJ
(
xi, yi;w

)
(2.22)

3. Batch Gradient Descent: like gradient descent but the parameters are updated

51

after every batch collection of data samples being an improvement on full

batch and stochastic gradient descent, keeping the frequent gradient updates

but decreasing the variance. Equation where b is now the batch size:

w = w − α∇wJ
(
x{i:i+b}, y{i:i+b};w

)
(2.23)

4. ADAptive Moment estimation (Adam): uses the idea of momentum besides

just the learning rate like in gradient descent. Momentum speeds up conver-

gence and reduces the variation away from the minimum. Adam uses mo-

mentum of the first and second order, allowing for the speed with which we

approach a local minimum to be adaptable so as to not overshoot [51]. Equa-

tion where the first is the first and second order momentum calculation using

the mean and variance of the past gradients and the second is the update rule

for the parameters (the other parameters are initialised by default):

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.24)

θt+1 = θt −
η√
v̂t + ε

m̂t (2.25)

Looking at different ways to optimise the loss function, a short brief is needed on

the usual functions representing that loss. In regression, we usually resort to mean

squared error (l2 or euclidean norm) between the true and predicted value which is

also the starting point of the least squares estimate derivation in the linear regression

52

case. For binary classification problems which we will tackle when building a discrim-

inator for the nonvalidated samples (preconditioning model), binary crossentropy

is the appropriate loss function. In classification problems, we are not working with

the ”value” of the prediction like in regression, but rather the probability that the

model gives to each of the classes being allocated to an input sample. Thus, binary

crossentropy needs to be able to measure loss with probabilities using the concept of

entropy and loglikelihood to quantify this probability-to-loss relationship between

two distributions, namely the one for true and predicted values. In the end, we are

maximising the probability for the correct class while simultaneously minimising the

probability that the incorrect class is assigned [52].

2.2.5 Overfitting

Overfitting occurs when a model fits too well on the training data but does not

generalise well to unseen test data. It can be diagnosed by looking at the learning

curves of the model, plots of training and testing loss vs fractions of data trained, or

in the case of neural networks plots of training and testing loss vs epochs of training.

It usually manifests in these curves as decreasing training loss at higher fractions or

epochs and an increasing test loss. The model learns the noise or irrelevant features

in the training data which do not occur in the test data thereby preventing the usage

of the model in real world cases.

There can be multiple sources of overfitting like having a small amount of data in

53

the dataset where models are forced to learn noise or high complexity of the models

which need more data if they are to avoid learning from noise. Overfitting has its

foundations in the statistical bias-variance tradeoff [28]. High variance of a model

implies that when the model is fit to different sets of data even from the same

dataset, the model fits are very different from each other. Overfit models usually

have high variance and low bias and improvement is usually observed in terms of

test error when more data is added to training.

Other strategies to avoid overfitting when adding more data is not an option is

putting a penalty on the magnitude of the weights and/or their number. In linear

and polynomial regression, l2 or l1 regularisation implies adding a square or absolute

sum term of weights to the objective function that will force the optimisation to bal-

ance sparsity and high performance on the training set (see below for l2 regularised

regression).

Lridge (w) = (Xw − y)>(Xw − y) + λ

D∑
i=1

w2
i (2.26)

For SVR, the parameter C acts as a regulariser whose magnitude is inversely pro-

portional to levels of regularisation. Having a large C forces the margin or regression

fit to more stringently fit the training data beyond what is generalisable to unseen

points [53]. In the case of kNN, a similar discussion applies. Using a small value of k

forces the fit to be much more strict or complex on the training data and the inverse

would implicitly add a regularising effect without any added penalty terms for model

complexity [28]. As far as neural networks are concerned, l2 regularisation penalty

54

on the weights is also an option but with a slight difference in implementation from

the regression models, while another popular technique is dropout. Dropout makes

a certain number of units in the hidden layers it is applied to not be updated at each

training step. Which units or nodes get ”dropped” is determined randomly at every

step but at test time all of the nodes are used with the weights multiplied by the

fraction used in dropping. The success of this approach comes from a type of model

averaging where every time a set of nodes is dropped, a different model is trained

in a way, and at test time, the final model is a sort of average of all of these models

thereby helping reduce the variance and the overfitting [36]. Another strategy often

applied to the neural scenario is using batch normalisation. In batch normalisation,

the internal covariate shifts which represent changes in the distribution of the in-

puts to deep layers of the network after every batch when the weights are updated

causing more challenging learning for the network is stabilised by standardising or

normalising the input to a layer for each batch. Normalising the activations of the

previous layer means that assumptions made in the next layer about their distribu-

tion during the weight update will not change dramatically [54].

2.2.6 Metrics

When working on regression models predicting the off-target cleavage rates, the

metric can be the mean squared error, but when it comes to comparing models on

their CRISPR target efficiency prediction performance, other metrics are commonly

employed like Pearson and Spearman Rank Correlation [55]. The correlation metrics

55

measure the statistical relationship between our true and predicted values. The met-

rics output a correlation coefficient between -1 (perfect negative/inverse correlation)

and 1 (perfect positive correlation). A coefficient of 0 shows no linear correlation

between the true and predicted values and represents the worst performing models

since their predictions are not at all related to the true values [56].

The Pearson Correlation Coefficient r measures the linear correlation between two

variables and compared to the mean square error takes into account the means of

the variables and the sample size. It is computed by dividing the covariance by the

product of the two variables’ standard deviations:

r =

∑
i (xi −mx) (yi −my)√∑

i (xi −mx)2
√∑

i (yi −my)
2

(2.27)

Where m is the mean of the respective variable. The Pearson correlation coefficient

can be related to the mean square error if the data is mean-centered around 0 and

both x and y have been normalized to have an average power of 1:

r =
1

n

n∑
i=1

xiyi, MSE = 2

(
1− 1

n

n∑
i=1

xiyi

)
= 2(1− r) (2.28)

The Spearman Rank Correlation Coefficient, on the other hand, is a non-parametric

measure of rank correlation representing how well the relationship between two vari-

ables can be described using a monotonic function. In a monotonic relationship, as

compared to a linear one, the rate at which the other variable is affected by changes

in the first is not expected to be constant. In that sense, the Pearson coefficient

56

is a special case of the Spearman coefficient when the relationship is assumed to

be linear. Furthermore, the Spearman coefficient works with rank ordered variable

data and not with raw data as the Pearson coefficient does [56]. In other words,

instead of using covariance and standard deviations of the samples themselves, the

statistic is calculated from the relative rank of values on each sample:

ρ = 1− 6
∑
d2
i

n (n2 − 1)
(2.29)

Where ρ is the Spearman rank correlation coefficient, di is the difference between

two ranks of each sample, and n is the number of samples. The Spearman coefficient

is also between the values of -1 to 1 indicating levels of negative to positive rank

correlation.

2.2.7 Hyperparameter Tuning

Previously repeatedly mentioned parameters or hyperparameters are important parts

of models that determine how fast they converge and what levels of regularisation or

complexity are enforced. Since the test data cannot be touched during training, the

training data is usually split into training and validation sets with the purpose of, for

a specific combination of hyperparameters of that model, the model will be trained

on the training set and evaluated on the validation set. The set of hyperparameters

that yields the best performance on the validation set is the one to be chosen.

There are different methods to implement different training and validation scenarios

57

for different hyperparameter combinations including grid search and bayesian op-

timisation. In grid search, all possible combinations of hyperparameter values are

implemented for validation and the one that gives best performance of the model

on the validation set is chosen [57]. Grid search does not use any prior information

of the success of previous hyperparameter combinations to inform which combina-

tions to focus testing next. In bayesian hyperparameter optimisation, we resort to

modelling the probability of the objective function and using it to select the op-

timal hyperparameters conditioned on the performance of previous combinations.

Bayesian optimisation, thus, can be more computationally expensive because the

algorithm requires keeping information on the performance of past combinations

but it narrows down the search space which is its unique advantage [58].

To help reduce variance in the validation error, KFold crossvalidation can be used

to divide the dataset into K folds, and use K-1 for training with the Kth one for

validation. This allows the model to train and be validated on all of the data, with

the final validation performance being an average of the K individual validation

measures. Choosing a larger K can lead to less bias towards overestimating the

error with training folds closer to the total dataset, but with higher variance of the

error [59]. Some default values for K include 3, 5, and 10 with 10 being used for

larger datasets.

58

2.2.8 Shapley Values

Shapley values is a concept from game theory meant to indicate how much a player

in a coalition in cooperative games should get from the shared payoff. The amount

a player gets is determined by their estimated contribution to making the coalition

”successful” at achieving the payoff, i.e. the importance of each player. Transferring

that to the machine learning scenario, features can be taken as players, and the

”successful” coalition payoff is the change in the prediction, meaning the prediction

is the game. The Shapley value is the average contribution of a feature value to

the prediction in different coalitions (sets of features) [60]. Thus, Shapley values of

features in machine learning can tell use what each feature’s contribution was to the

model’s prediction. In more mathematical terms, the below equation represents the

calculation of Shapley value for feature/player i :

φj(val) =
∑

S⊆{x1,...,xp}\{xj}

|S|!(p− |S| − 1)!

p!
(val (S ∪ {xj})− val(S)) (2.30)

Where p is the number of features, S is a subset of the features used in the model, x

is the vector of feature values of the instance to be explained. One interpretation of

the equation is to think of a set of features being created one feature at a time with

each feature’s contribution being the amount the payoff or prediction changes by

their addition. For each feature, take the average of its contribution to all possible

permutations of sets of features it can be a part of. The Shapley value of a feature is

then the average change in the prediction that the subset of features receives when

59

the feature joins it [61]. Another way to interpret the equation is to say:

To calculate the Shapley value of a specific feature j, sets of all possible

unions are formed with all p features except feature j. The value of the j-

th feature is obtained via calculating the difference between the results of

the characteristic function val on the set of all features and S (the subset

without feature i). Shapley value of a particular feature j is then calcu-

lated by taking the average of the marginal contributions of all possible

combinations of the feature unions [62].

The Shapley value has a particular property called efficiency which states that the

feature contributions must add up to the difference of prediction for the value of the

feature subset and the average which implies that that difference is fairly distributed

among features, an advantage over other explainability methods like LIME [61, 63].

The Shapley value does not have to be computed using the entire test set, but can

have contrastive explanations, meaning a prediction could be compared to a subset

or even to a single data point of the dataset. The downside of the Shapley value

is that it is computationally expensive to compute, as it relies on using all possible

coalition and subsets of features. There are ways, however, to limit the number of

iterations or by randomly sampling feature subsets but that also increases the vari-

ance of the value. Another salient point is that the Shapley value does not measure

the impact on model performance or prediction when a feature is removed, rather

the contribution of that feature to the difference between the actual prediction and

the mean prediction. While these limitations are important to consider, for our ex-

plainability purposes and discussion, the Shapley value should suffice in determining

60

which of our DNA features are of relatively higher relevance to the prediction.

2.2.9 Ensemble Learning

Ensemble learning is the procedure by which several machine learning models are

combined to give overall better system performance at a task, either regression or

classification prediction. The general idea is that by combining several weaker pre-

diction models together one might achieve better performance. There are several

types of ensemble learning with the first usually introduced as bagging. Bagging or

bootstrap aggregation is when different training data subsets are randomly drawn

from the entire training dataset with each subset used to train a different model of

the same type. The output of each of these models is then averaged (in the case

of regression) or majority-picked (in the case of classification) as the final model

prediction [64]. We introduced a similar concept earlier when talking about dropout

in section 2.2.5 which effectively might amount to the same thing which is that the

ensemble attempts to reduce the variance when using any one of the weaker models

alone. In bagging the models are independently trained from one another and their

output is generated in parallel. No correlation or information sharing is expected.

Another example of ensemble learning is stacking or stacked generalisation, where

there are two levels or tiers of models. In the first level, different weaker or simpler

models are trained on bootstrapped training data independently but then their

outputs are used as inputs to the second level or meta-model that can hopefully

61

learn to leverage the advantages and weaknesses of each different tier 1 model to

output a more accurate final prediction. The difference with stacking is that the

goal is to decrease the bias of the prediction system and that sometimes comes with

a decrease in variance as well while also using different types of models for the first

level or tier [65]. Stacking is usually implemented with crossvalidation, that is the

level 1 classifiers are trained on K-1 folds with prediction on Kth fold which is then

used to train the meta-model. Such an approach will be adapted in this dissertation

[64]. An illustrated look at stacking can be seen below:

Figure 2.10: Example of a Stacking Architecture [66]

More will be said in methodology on the details of our implementation of ensemble

learning methods but it can be stated a priori that, in stacking, a primitive form

can include tier 1 models to be procedural or deterministic and not based on learn-

ing and optimisation. In that sense, the first tier models are in a way learning how

to convert the training data into outputs which are new features for the meta-model.

62

Methodology

3.1 Datasets for CRISPOR Reproducibility

Our first task was to construct the off-target cleavage dataset used in the CRISPOR

integration paper for validation of our procedural algorithms. We manually ex-

tracted the sequence pair, cell line, and cleavage frequency data from 8 published

genomic studies. The dataset consisted of 650 off-target sequences for 31 different

guides after processing while two of the studies did not validate their off-targets

with polymerase chain reaction (PCR). One challenge from assembling data from

different experiments is that the results have different sensitivity levels. The Hsu

and Cho datasets have off-targets with a modification frequency lower than 0.001

% while the others estimated their sensitivity at 0.1–0.2 %. This makes it harder

to compare the less frequent off-targets found in the two studies with those from

whole-genome assays. Thus, based on a similar approach as in the original paper,

we set a minimal threshold to modification frequency of 0.1 % for off-targets [18].

There are two score schema implemented in the integration paper: one looking at

only off-targets with up to 4 mismatches, and the other including the few cases that

63

had 5 and 6 mismatches as well. The cleavage frequency where not provided in

some of the studies was calculated by dividing the number of all successful genome

insertions or deletions by all observations at the corresponding off-target site [18].

For our purposes, we only needed to show the reliability of our scoring algorithms on

one of these schema and we chose the first one because most of the genomic studies

have separate supplementals for the second case which would require unnecessary

manual work integrating those into the far more numerous first case. A short de-

scription into the processing of each of these datasets is below.

3.1.0.1 Hsu et al. 2013

The Hsu study published in 2013 used targeted sequencing of predicted sites to re-

port 37 off-targets with 4 unique guides. They used PCR+ sequencing to validate

the targets on the two cell lines, HEK293T and HEK293FT. The reported sensi-

tivity was <0.00001 % meaning that their identified off-targets include rare cases

especially compared to those obtained in the other studies. The testing done on this

dataset was used to determine the weight matrix for off-target scoring for the MIT

score based on positional mismatches identified [19].

3.1.0.2 Cho et al. 2014

The Cho study published in 2014 also used targeted PCR sequencing of predicted

sites with 3-8 mismatches adjacent the 5’ end to report 77 off-targets with 10 unique

guides. They similarly used PCR+ sequencing to validate the targets on the K562

64

cell line. The reported sensitivity was <0.00001 % meaning that their identified off-

targets include rare cases especially compared to those obtained in the other studies

like in the Hsu case. The Hsu and Cho data has missing cleavage data which needed

to be calculated by dividing number of indels by all observations on the off-target

[67].

3.1.0.3 Frock et al. 2015

The Frock study used whole-genome translocation sequencing (HTGTS) of junc-

tion sites to report 86 off-targets with 4 unique guides. They did not validate their

off-targets which might increase the number of false positives, and they used the

HEK293T cell line. Because they did not use targeted sequencing, no sensitivity

levels were reported. Most of the 5 and 6 mismatch cases were obtained in this

study but because they were not validated their low modification frequencies are

not fully reliable. Additionally, they did not directly quantify indels but counted

the lentiviral insertions which samples infrequent cleavage events and can overesti-

mate real modification frequencies [18, 68].

3.1.0.4 Tsai et al. 2015

The Tsai study published in 2015 used whole-genome GuideSeq detection of strand

breaks to report 403 off-targets with 10 unique guides. They did not validate their

off-targets and they used the HEK293 and U2OS cell lines. They did not validate

the off-targets but their reported sensitivity was about 0.1 %. This study interest-

65

ingly shows that some off-targets sites are not predicted by algorithms (nonvalidated

samples that we will explore in the last part) especially in the case of targets in-

volving 1bp indels (bulges) [18]. This study as well did not validate off-targets with

PCR amplicon sequencing and can include false positives [69].

3.1.0.5 Kim et al. 2015

The Kim study used whole-genome DiGenome-Seq and PCR sequence detection to

report 12 off-targets with 2 unique guides. They validated their off-targets with tar-

geted PCR sequencing and they used the HAP1 and K562 cell lines. Their reported

sensitivity was about 0.1 % [70].

3.1.0.6 Wang et al. 2015

The Wang study used Lentiviral integration site sequencing to detect viral integra-

tion to report 13 off-targets with 2 unique guides. They validated their off-targets

with targeted PCR sequencing and they used the HEK293T cell line. Their reported

sensitivity was about 0.5 % [71]. This study also showed that some off-targets sites

are not predicted by algorithms like CRISPR Design Website and ECrispr including

cases like targets involving bulges [18].

66

3.1.0.7 Ran et al. 2015

The Ran study used whole-genome BLESS (breaks labelling, enrich. on streptavidin,

seq.) to detect strand breaks and reported 17 off-targets with 2 unique guides. The

study was not investigating off-targets per se, rather demonstrating the efficiency

of a novel Cas9 mechanism. They validated their off-targets with targeted PCR se-

quencing and they used the 293FT cell line. Their reported sensitivity was <0.00001

% [72].

3.1.0.8 Kim et al. 2016

The more recent Kim study used a newer DiGenome-Seq2 + PCR approach to

detect 30 off-targets with 10 unique guides with whole-genome sequencing to find

CRISPR-induced modifications [18]. They validated their off-targets with targeted

PCR sequencing and they used the HAP1 cell line. Their reported sensitivity was

the same as in the earlier study: about 0.1 % [73].

3.2 Base Models

3.2.1 Procedural Scores and CrisprSQL Processing

While there are other procedural scores besides the 4 included here, we decided to fol-

low the established methods and results proposed in the integration into CRISPOR

paper [18]. The CRISPOR paper showed the relative performance measures of MIT,

67

CFD, CROP-IT, and CCTop on this selection of datasets described in the earlier

section. To test our implementation of these scores, we compiled these genome

experimental datasets for off-target prediction and applied our algorithms for pro-

cedural score comparing them to the results obtained in the CRISPOR paper. One

point of note is that CRISPOR used these procedural scores for classification and

not regression. They set a off-target activity threshold for each of the procedural

scores above which binding would be classified as on-target and below which as off-

target (for example, 0.023 is the cutoff value for CFD scoring) [18]. This is a minor

difference since it just choosing a rather artificial threshold to separate values into

two classes, whereas we will be working with the real valued activity estimates di-

rectly. When replicating the results of the paper, we will be using the classification

threshold. A difference between the CRISPOR implementation and our CrisprSQL

anaylsis is that the off-target cases considered in the paper and reproduced here

only include case of up to 4 mismatches while our implementation of CrisprSQL

used example of up to 5 mismatches as those are included in the database.

Because verification of our procedural algorithms and reproducibility of the CRISPOR

integration paper is not one of our main results, the implementation details of that

part of the dissertation aim will be included here and not in the results section. It

is important that our method implementing the procedural scores are validated and

their performance compared to existing benchmarks before implementing them on

a larger and more comprehensive dataset like CrisprSQL.

68

Figures 3.1 below has been retrieved from the original integration CRISPOR publi-

cation showing the performance benchmarks of the procedural scores on the genomic

datasets assembled from the above. Figure 3.2 shows our reproduction of the proce-

dural score results on the genomic datasets which we manually assembled from the

original sources and supplementary data.

Figure 3.1: ROC of Procedural Scores on A Col-
lection of Genomic Datasets [18]

Figure 3.2: ROC of Procedural Scores on A Col-
lection of Genomic Datasets Reproduced

MIT score refers to the MIT off-target score as calculated by the CRISPOR web-

site, MIT Website refers to the MIT off-target score as calculated by the CRISPR

Design (MIT) website. The latter values were retrieved from the GitHub repository

directly as the website is no longer active [74]. The reason the MIT website score

is more diagonal in our reproduction is that we imputed the values using the mean

69

instead of leaving them as 0 like the original paper did [18]. Otherwise, we can see

that our implementation of the procedural scores successfully reproduces the results

from the integration paper, thus we have confidence in extending the algorithms to

CrisprSQL data calculation.

Once we have verified the fidelity of our procedural score mechanisms by evaluat-

ing them on existing genomic datasets, we apply them to the CrisprSQL database.

CrisprSQL has 25,632 samples of target and off-target pair information beyond just

sequences including energy levels and chromatin information. The label of cleavage

rate combines several meaures within it which the researchers classified under the

term. Measures subsumed withing the cleavage rate include mutation frequencies,

indel frequencies, relative read counts converted by using the read ratio relative to

the sum of reads for a given guide, etc. Furthermore, in the CrisprSQL paper, the

label is transformed to a Gaussian with zero mean and variance σ=2 using the non-

linear Box–Cox transformation based on a similar approach taken by Listgarten et

al. [8, 75]. We decided to work with the cleavage frequencies directly as targets and

not apply transformations on our labels for regression.

Our initial analysis will focus only on sequence information and extracting relevant

features be it through procedural scores or deep learning models. Some target se-

quences, however, will have triple dashes signifying where the cleavage was done,

and those dashes were removed. Single dashes indicate that the nucleotide in ques-

tion in the target sequence could be any of the 4 nucleotides, thus we decided to

70

replace all of the single dashes with the corresponding nucleotide on the guide RNA.

Such an approach has been utilised previously by CRISPR-Net [76]. Additionally,

we only consider the first 20bp of the sequence for analysis besides the PAM of

course as most of the procedural scores implemented do so. To maintain consis-

tency among the base models, the same sequence length will be used when training

the deep learning models. Finally, as far as missing values are concerned for some

of the cleavage rates, instead of removing them, we decided to impute them using

the means of the cell line cleavage rates for each sample that is missing. Missing

values make up less than 4 percent of the total number of samples, so we do not

feel that imputation would affect the result significantly. When it comes to CFD

scoring, 1872 samples or target sequences had PAM sites not supported by the CFD

scoring thereby missing the weights for those PAM sites and getting a score of 0.

Following the calculation of the scores by the procedural algorithms, we will cal-

culate the Pearson and Spearman correlation coefficients between the scores and

the cleavage rate (label, target) for each of the models and compare their relative

performance. Since the real values of the scores will be used and not an individual

conversion to binary classes, the relative scaling of the scores becomes important

for machine learning model input. MIT, for example, is on a scale of 0 to 1 while

CROP-IT has values of up to 650. To maintain internal consistency in the features,

we applied standard scaling by fitting the training data only and transforming the

entire dataset. When using crossvalidation and to avoid leakage, we will be fitting

the standard scaler to each iteration of crossvalidation on the training folds only.

71

Existing efforts of off-target activity prediction like the procedural scores mentioned

are standard and usually used for comparison purposes. Their capacity to predict the

levels of activity vary between them and their algorithms are not based on learn-

ing or optimisation, rather straightforward application of formulas whose weights

have been derived experimentally. Thus, machine learning models might be able

to outperform these existing tools by learning from sequences directly or by using

the procedural scores as features. Our contribution in this dissertation, in part, will

be using these established procedural mechanisms as feature extraction tools and as

”base models”, the first time such an approach has been undertaken in the off-target

scenario. We will also apply Shapley value analysis on the machine learning model

using the procedural scores as features to identify which procedural mechanisms are

most influential in making a prediction, relating back to the underlying differences

between what each procedural score measures. More details on the frameworks we

decide to develop in integrating these procedural scores as features is in Section 3.3

further below.

Furthermore, deep learning has been applied to the problem of off-target prediction

with several noteworthy examples like those in Lin et al., CnnCrispr, and Deep-

Crispr [6, 4, 7]. Each of the models has a slightly different approach as to how they

predict off-target activity which will be described further in the next section. Lin

uses both MLP and CNN models on one hot and OR encoded sequences, while Deep-

Crispr uses a pre-trained encoder in a siamese-type network. Another contribution

72

we make is to implement BGRU and siamese BGRU (names 2BGRU) architectures

and compare them to existing deep learning models like the ones proposed in Lin

et al. A step further is to create a larger and more sophisticated ensemble learning

model that would combine these deep learning models with procedural scores for

fast but accurate prediction of off-target activity levels. Thus, there are two phases

of base model implementation, the first is using just the procedural scores combined

as features, while the second is using them in conjunction with deep learning models

extracting features from the sequences directly.

3.2.2 Deep Learning Models

Several deep learning models have been proposed for different experimental studies

of off-target profiles, however, due to the data sizes of the studies and variation

across experiments, performance measures have also had high deviation. The hope

is that with the combination of experimental data and its standardisation into a

large dataset like CrisprSQL, deep learning models applied for the first time to this

data will produce more stable results [8, 6]. Lin and Wong proposed in 2018 the

first deep learning framework for off-target prediction and their two best performing

architectures will be applied here in the case of CrisprSQL as an extension of their

work but also as a base of comparison for our own deep learning architectures [6].

73

3.2.2.1 LinnFNN3 and Linn

These deep learning models developed by Lin and Wong only need sequence pair

information represented as a 23 character long string. Each character is a nucleotide

base, A, T, C, or G, and the last 3 characters are the PAM site of the respective

target sequence. The two sequences for a sample are one-hot encoded to create 2

4x20 matrices of binary code, one for the guide RNA and the other for the target

sequence. The two matrices are then OR encoded by performing the OR operation

between the mismatches of the two sequence matrices. A more detailed look can be

seen in Figure 3.3 below:

Figure 3.3: OR encoding of sgRNA-target sequence pair [6]

This generates only one 4x20 matrix from both sequences which can be appropri-

ately passed on to neural networks for learning. Depending on the model, Linn or

LinnFNN3, since they have a different architecture, the input matrix will have to be

74

formatted. In the case of Linn, or CNN std how the classification version of Linn is

named in the Lin and Wong paper, the input can be formatted as image input into

CNNs of the matrix form 20x4. The Linn architecture we implemented is based on

the CNN std (Figure 3.4) with the following differences: first, we do not consider

the PAM, or the last 3 nucleotides of the sequence so our input is 20x4 (the reasons

have been stated in the previous section), second, the output layer consists of one

node without a softmax activation but rather a linear activation due to us working

on a regression and not classification problem. The convolutional layer consists of

40 filters whose dimensions have been adjusted accordingly with a ReLU activation

function, and the batch normalisation layer is added to stabilise learning and reduce

overfitting. The global max-pooling layer has a window size of 5 and the outputs

are flattened before being fed into an MLP. The MLP has two hidden layers, 100

and 23 neurons each, with the second layer preceeding a dropout layer with 0.15

probability connected to a final output node with the linear activation function.

Figure 3.4: CNN std architecture from which Linn model was adapted [6]

The second architecture adapted was FNN 3layer which we re-dubbed LinnFNN3

75

in our version. The LinnFNN3 is a relatively simple MLP with 3 hidden layers

with 50, 20, and 10 neurons each respectively. The hidden layer activation functions

are ReLU and the output node again has a linear activation function. Since MLP

require flattened input, we formatted the sequence 4x20 matrix into a 1x80 input

vector. Both of the original architectures, CNN std and FNN 3layer, have outper-

formed the procedural scores in classification on the CRISPOR dataset as can be

seen in Table below.

Model Mean AUC Var AUC

FNN 3layer 0.970 0.005

CNN std 0.972 0.010

Logistic Regression 0.931 0.018

CFD 0.912 0.027

MIT 0.728 0.063

CROPIT 0.807 0.022

CCTop 0.776 0.029

Table 3.1: Performance of different models under stratified 5-fold cross-validation on CRISPOR
dataset [6]

Mean AUC stands for the mean Area Under the Curve of the ROC curve across

all 5 folds and Var AUC for the variance. The two models we used as a baseline

to develop our own Linn and LinnFNN3 models for off-target activity prediction

outperform standard procedural score models. We will investigate whether similar

performance ability is maintained in the regression realm on the larger and more

varied CrisprSQL dataset.

76

3.2.2.2 BGRU and 2BGRU

The previous deep learning models of Lin and Wong, including DeepCrispr and

CnnCrispr, all tried representing the genetic sequence pair matrix as an image where

CNNs will be able to learn the spatial properties of the matrix and be able to extract

relevant but abstract features from the OR-paired sequences. A further approach is

to go beyond just spatial learning and explore learning the natural sequential nature

of the DNA data. In 2020, a paper suggested implementing RNNs and CNNs in

a combined effort with the BGRU framework in predicting on-target activity [77].

Based on their approach, we decided to design a similar BGRU framework for our

problem with the following distinction: first, we are predicting off-target activity

score and not on-target, an inherently harder challenge for the models, second,

we will not be using any epigenetic features but only learn from sequence data

directly not needing a siamese-style network to integrate learning from epigenetic

information, third, we will only look at the binding 20bp region without the PAM

site, and fourth, we will train on the larger CrisprSQL dataset without being limited

by dataset size to have to resort to transfer learning. Our investigation will try to

explore whether learning sequential dependencies can aid in the difficult off-target

activity prediction problem. The BGRU architecture we implemented can be seen

in Figure 3.5 below.

77

Figure 3.5: Our BGRU Architecture adapted from [77]

As in the Linn model, the input matrix to the convolutional layer has been format-

ted as a 20x4 matrix from OR encoding where the abstract features will hopefully

be extracted. CNNs perform well at capturing local patterns in sequence data by

using weight-sharing strategy but not as well at learning sequential correlations [77].

The BGRU layer will be able to learn the sequential dependencies present in the

DNA sequence, followed by an MLP with 4 hidden layers (256, 128, 64, 40 hidden

units respectively) with the last layer flattened before the output linear activation.

78

An assumption made in all of the previous deep learning models is that the OR

encoding presents a useful way to combine sequence encoding information from pairs

of sgRNA and target sequences that will allow the models to learn the underlying

patterns that lead to increased off-target activity and decreased specificity. This

assumption might be more of a burden than a practical way to format data. Perhaps

the OR operation collapses information present in both separately encoded sequences

that will be lost or not learned during training on that data. To explore this further,

we propose a siamese network architecture that will have two parallel and identical

neural networks learning from each of the one-hot encoded sequences (sgRNA and

target) directly without needing to apply any additional OR encoding. Our hope is

that removing this assumption will lead to more natural learning of each sequence

separately and the relevant features before combining that information in making

an off-target activity prediction. Since the BGRU network presents a sophisticated

approach to learning both local and sequential features, it will be the baseline for

the 2BGRU siamese network architecture proposed in Figure 3.6 below.

79

Figure 3.6: Our 2BGRU architecture built on the proposed BGRU model

We could not identify in current published research a similar approach taken to the

off-target prediction problem and this architecture represents one of our main con-

tributions in the project. The input data consists of pairs of one-hot encoded sgRNA

and target sequences in 20x4 format zipped together and passed to the model where

each is used for training by a different twin of the network. The architecture details

are similar to the BGRU above, the difference is that the twin network outputs are

not flattened but instead each passed to a shared multiplication layer which is then

80

flattened and the output node is linearly activated.

3.3 Meta-Model Ensemble Selection and Hierar-

chical Models

The procedural scores obtained from the CrisprSQL dataset will be used as features

and input into a meta-model mimicking a simple or primitive ensemble architecture

where the base models are not learning models as illustrated in Figure 3.7.

81

Figure 3.7: Primitive ensemble method for score feature learning

The Pearson and Spearman correlation coefficients will then be calculated between

82

the prediction of this ensemble and the true values of cleavage rate as well as plots

of mean square error loss plotted to diagnose the meta-model’s ability to learn to

combine these procedural scores. We will implement several model choices for the

ensemble meta-model including 4 different MLP neural network architectures as de-

scribed in the table below, kNN, linear and polynomial regression, and SVR.

Model Description

Architecture I 4 hidden layers and 5 hidden neurons in each

Architecture II 4 hidden layers and 16 hidden neurons in each

Architecture III 10 hidden layers and 5 hidden neurons in each

Architecture IV 10 hidden layers and 16 hidden neurons in each

Linear Regression Implemented polynomial kernel as well

SVM SVR for regression

kNN Tuned for optimal k on validation

Table 3.2: Proposed architectures for learning from procedural scores as features

We have seen how deep learning models have been applied to outperform the predic-

tive power of procedural scores and while that will also be a topic of this dissertation,

our aim is to show that by using a simple ensemble with a neural network learning

to combine these procedural scores for off-target activity prediction can also help

improve their predictive power.

The next step is to learn from sequence data directly without using procedural scores

as feature transformers. To that end, combining the deep learning models into the

ensemble alongside the procedural scores will follow the basic structure described in

83

Figure 3.8 below.

84

Figure 3.8: Our ensemble design with procedural scores and deep learning sequence models

85

It will be evident later but of the 4 deep learning models we are implementing, some

groupings in terms of prediction distributions between them can be observed. For

example, two of the models can tend to overestimate cleavage frequencies below a

certain threshold while the other two underestimate. Because of that, having more

than one deep learning model in the ensemble that shows a different manner of

learning and prediction might help improve the overall predictive power of the en-

semble through a best-of-both-worlds approach. Again, the meta-model learning to

combine the scores of the procedural methods and the predictions of the deep learn-

ing models will either be a neural network or a kNN regressor (after experimenting

with several other machine learning model candidates including linear/polynomial

regression and SVR).

Furthermore, so far we will be working only with experimentally validated off-

targets, i.e. those that were confirmed to occur in genomic studies whereas all

the others predicted by algorithms are termed nonvalidated or inactive. A specific

challenge is having an off-target activity prediction model that will be affected min-

imally by including the nonvalidated samples in the validation (not training) data

and will be able to separate the active from inactive off-target sites while also giving

good activity scores for the active cases. In our regression models, we are learning

the complex fits to be able to predict activity scores, but enforcing the task to si-

multaneously be able to classify or separate the nonvalidates samples (with scores

of 0 since they do not occur) might not be successful. To help resolve this, we will

resort to a hierarchical system where we develop a separate classification model to

86

learn to separate the nonvalidated from the validated samples first, to the extent

that is possible. In effect, the binary classifier acts as a preconditioning model. Af-

ter that, the validated samples will proceed on to be learned by the ensemble for

off-target activity prediction. Combining this binary classifier with the ensemble

consisting of several machine learning models in 2 levels or tiers leads us to propose

the hierarchical system in Figure 3.9 below. It is important to note that the term

”validated” and ”nonvalidated” has nothing to do with whether the samples form

parts of the validation or result-reporting set in our experiments as those are two

different concepts. Indeed, nonvalidated samples will be part of 5 different valida-

tion sets at varying ratios explained further below the figure.

87

Figure 3.9: Hierarchical system for robust off-target activity prediction

88

To evaluate the robustness of each model architecture or its resilience to these non-

validated samples, 5 evaluation scenarios will be created:

1. 0 which will contain only validated samples from CrisprSQL;

2. 1/1 which will have 1/2 of samples be validated samples from CrisprSQL and

1/2 nonvalidated;

3. 1/10 which will have 1/10 of samples be validated samples from CrisprSQL

and 9/10 nonvalidated (almost order of magnitude difference);

4. 1/100 which will have 1/100 of samples be validated samples from CrisprSQL

and 99/100 nonvalidated (almost two order of magnitude difference);

5. 1/250 which will have 1/250 of samples be validated samples from CrisprSQL

and 249/250 nonvalidated;

The following section will detail the training and validation procedure for these

models and systems as well as our mechanism for hyperparameter tuning of each of

the learning models.

3.4 Implementation

Python3 was used to both program the procedural scores and test them, as well

as all of the machine learning, interpretability, and visualisation methods. Python3

was chosen due to our familiarity with its programming norms, as well as the over-

whelming presence of the programming code in the machine learning community.

89

The packages included in Python3 allow for easy transferability of methods alongside

CUDA integration for training. All of the code and implementation was completed

on a personal computer. Google Colaboratory was used primarily because of the

access to a remote GPU including Nvidia K80s, T4s, P4s and P100s and 13GB

of free RAM. These resources proved vital for the completion of the experiments

including tuning, training, and visualising the more advanced methods employed

here, especially the large 2BGRU model. There were enough experiments that did

not require using these resources, so for sustainability purposes, these tasks were

performed on the personal computer sporting an Intel(R) Core(TM) i7-7500U CPU

@ 2.70GHz, 16GB of RAM, and GPU Nvidia GeForce 940MX with DirectX 12.

We used Keras and Tensorflow to create, train, and save the machine learning mod-

els because of our familiarity with the packages. We regularly depended on Pandas

especially for data processing, Numpy, Seaborn and Matplotlib for visualisation,

sklearn for crossvalidation and data splits, SciPy for calculation of the correlation

metrics, and SHAP for the calculation and visualisation of Shapley values of the

features.

For hyperparameter tuning, we used Weights&Biases, an online platform that al-

lows for Bayesian Optimisation (applied here) of listed values for hyperparameters

including number of layers in neural networks, hidden units, activation functions, as

well as any custom arrangement for a multitude of machine learning models. Vali-

dation plots and feature importances as well as details of tuning are included in the

90

Appendix.

Similar to the approach in Lin and Wong, we will be using 10-fold crossvalidation

to display mean and variance values of our Pearson and Spearman correlation re-

sults [6]. In the ensemble, we are using the base models for feature extraction, thus

they will be given a set of training data for which they will provide predictions, and

this set of predictions will be used to train the meta-model of the ensemble. The

base models will not have access to the validation data of the meta-model so as to

avoid data leakage. The base models and binary classifier will be tuned alongside

the meta-model while making sure that when reporting the prediction results, the

validation or testing set is not seen by the earlier levels of models.

A plan for experiments can be summarised in the workline below:

1. Combine genomic datasets by manually extracting off-target records from the

8 datasets mentioned in the previous section;

2. Standardise the datasets by computing cleavage frequencies for those that have

it missing using indel frequencies as substitute;

3. Export the data into .tab format for easy processing and reproducibility;

4. Implement the procedural methods in Python code and apply them to the

combined genomic studies dataset;

5. Obtain the ROC for each of the methods and compare them to the results

obtained by CRISPOR integration paper for method validation;

91

6. Apply data processing to the CrisprSQL dataset (missing values, sequence

processing etc.);

7. Implement the validated procedural methods on the CrisprSQL dataset for

regression, not converting the scores to binary classes;

8. Compare the scores’ relative performance by using Pearson and Spearman

Correlation Coefficients;

9. Implement a primitive ensemble by using machine learning models to learn

from procedural scores to improve the predictive power for off-target activity;

10. Tune the hyperparameters for the machine learning model;

11. Use Shapley Value analysis to ascertain which procedural methods provide a

more insightful look into the specificity of the sgRNA for design optimisation;

12. Design and compare 4 different deep learning architectures (tuned individu-

ally) that can learn from sequences directly to predict off-target activity, not

needing procedural methods;

13. Integrate 1 or more deep learning models into the primitive ensemble to im-

prove its predictive ability and allow ensemble to learn directly from sequences;

14. Process and standardise the nonvalidates samples dataset and create 5 different

experimental scenarios for observing the impact of inactive off-targets on the

predictive ability of the models;

15. Include a binary classifier (tuned hyperparameters) to separate validated and

92

nonvalidated samples so as to increase the robustness of the ensemble to inac-

tive off-targets;

There have been smaller steps and methodology decisions taken in between the

methods shortly summarised here, and they will be mentioned where relevant in the

results and discussion sections.

93

Results

Here we will outline the main results of performing experiments as described in

the methodology. The segmentation into sections and subsections is to aid in un-

derstanding the journey of achieving our aims and is not meant to represent a

conceptual fragmentation of the overarching project. Our aims build up on previous

questions and answers and they are not separate or independent modes of inquiry.

Details on the model selection and hyperparameter tuning will be found in the Ap-

pendix as we do not consider them the main results of the dissertation. In the first

section, we will outline the fulfillment of the first couple of aims which is imple-

menting procedural scores on CrisprSQL data followed by several model versions

for the meta-model in the ensemble learning to combine these procedural scores as

features. This will be followed by the analysis of feature importance in terms of

these procedural scores with Shapley Value calculation.

The second part concerns implementing 3 existing deep learning architectures and

1 made by us on the CrisprSQL data to learn from sequences directly without us-

ing procedural scores. Naturally, the next step is the results from combining both

94

deep learning and procedural models into an ensemble to investigate the impact

on predictive performance. The last part relates to the impact of nonvalidated

samples and the robustness of the models we developed in the previous two parts

to predicting inactive sites according to 5 scenarios having different ratios of vali-

dated/nonvalidated samples. And, finally, observing the efficacy of different binary

classifiers in separating validated from nonvalidated samples and including that as a

preconditioning model of the ensemble leading to a hierarchical system arrangement.

4.1 Procedural Scores and Ensemble I

We firstly present the results of applying procedural scores on CrisprSQL data to ob-

tain 4 off-target efficiency measurements whose correlation with cleavage frequency

will be measured with Pearson and Spearman Coefficients. The models with higher

value for Pearson are better linear indicators of cleavage rate, while those with higher

Spearman of higher rank correlation between model output and the cleavage rate

target variable. Since we used 10-fold crossvalidation, all results represent the mean

and variance of the 10 folds so as to decrease the sampling bias and to represent the

variance of the results.

95

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Table 4.1: Correlation results for procedural scores

We firstly present the results of applying procedural scores on CrisprSQL data to ob-

tain 4 off-target efficiency measurements whose correlation with cleavage frequency

will be measured with Pearson and Spearman Coefficients. The models with higher

value for Pearson are better linear indicators of cleavage rate, while those with higher

Spearman of higher rank correlation between model output and the cleavage rate

target variable. Since we used 10-fold crossvalidation, all results represent the mean

and variance of the 10 folds so as to decrease the sampling bias and to represent the

variance of the results. We then used all 4 of the procedural scores as features in the

different neural network architectures outlined in the methodology in Section 3.3

to predict the cleavage rate and measure the correlation by Pearson and Spearman

coefficients.

4.1.1 Architecture I

For architecture I, after hyperparameter search and trained with Adam for 100

epochs, the comparative results obtained can be seen in Table 4.2 below.

96

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture I 0.381 1.2e−4 0.274 2.0e−3

Table 4.2: Correlation results for procedural scores and Architecture I as ensemble

4.1.2 Architecture II

Similar procedure as above was repeated for architecture II (Adam/100e) with the

following results:

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture I 0.381 1.2e−4 0.274 2.0e−3

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Table 4.3: Correlation results for procedural scores and Architecture I and II as ensemble

The result with batch normalisation is included below and it told us that the method

exacerbates the effects of a larger learning rate (sharp drop and saturation of loss)

97

while also leading to a decrease in performance. We, thus, decided to continue with

architecture II in future experiments without batch normalisation.

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture I 0.381 1.2e−4 0.274 2.0e−3

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II w/ BN 0.453 1.0e−3 0.264 2.0e−3

Table 4.4: Correlation results for procedural scores and different architectures as ensemble

A short comment on architecture III whose loss behaviour is included in the Ap-

pendix which showed the worst performance out of all of the architectures. For these

reasons we focused only on architecture IV next.

4.1.3 Architecture IV

Architecture IV is by far the most complex of the architectures with 10 hidden layers

with 16 hidden neurons in each. Loss behaviour in Figure 4.1 below shows the effects

of overfitting and instability due to the complexity. Thus, we implemented batch

normalisation on this architecture as well with training with SGD for 100 epochs

with the following results:

98

Figure 4.1: Training and testing loss for architecture IV

The effects of batch normalisation on the loss of architecture IV can be seen in

the Appendix and they do show a more stable learning process alongside the above

improved predictive result. The results, however, still cannot compete with archi-

tecture II in the combination without batch normalisation which is why that was

the model of choice going forwards for the ensemble model. To further capitalise on

this model architecture II, we trained it for a longer period of time with 700 epochs

and obtained the best predictive result included below:

99

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture I 0.381 1.2e−4 0.274 2.0e−3

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II w/ BN 0.453 1.0e−3 0.264 2.0e−3

Architecture II (700e) 0.501 4.0e−3 0.318 2.5e−3

Architecture II w/ BN (700e) 0.490 3.3e−3 0.260 2.1e−3

Architecture IV 0.440 3.4e−3 0.265 2.8e−3

Architecture IV w/ BN 0.447 1.1e−3 0.281 2.3e−3

Table 4.5: Correlation results for procedural scores and different architectures as ensemble (bold
highlights best)

The loss behaviour of the model architecture II fulfilling the first set of aims and

outperforming all procedural scores in both Pearson and Spearman coefficients can

be seen in Figure below with the batch normalised loss in the Appendix.

100

Figure 4.2: Training and testing loss for architecture II trained for 700 epochs

While the loss still shows instability at higher epochs we can confirm this happens as

well when batch normalisation is added, thus leading us to conclude that the noise

in the higher epochs is more probably due to the crossvalidation procedure and the

variation of the data across shuffled folds rather than a strong impact of overfitting.

4.1.4 Shapley Values

Having chosen our best performing model, we implement Shapley Value analysis

(using random 100 test samples) on the model with the procedural scores as features

and obtain the following Figure 4.3 that shows the relative feature importance of

the existing off-target efficiency methods.

101

Figure 4.3: Feature importance according to shapley values of procedural scores in ensemble

4.2 Procedural Scores and Ensemble II

Neural networks are not the only mode of learning for regression problems. We

investigated also other potential meta-model candidates including linear and poly-

nomial regression, SVR, and kNN models. Starting with regression, we optimised for

the polynomial complexity, and achieved best validation performance with degree

7 with the validation plots included in the Appendix. The results of the regression

analysis are included in the Table 4.6 below with only the top performing architec-

ture II included going forward for comparison:

Support Vector Regressors are also another framework with which we can learn from

procedural scores for the task of regression. The SVR was tuned for 3 different ker-

nels: radial basis function (rbf), linear, and polynomial. The details are included in

the Appendix with the best results from validation obtained with the rbf kernel.

The last regression model used for procedural score learning was the kNN algorithm

102

whose optimal k was found to be 3 and the final results have been compiled below.

Because of 3NN being the only model that can compare with architecture II as

measured by both Pearson and Spearman results, it will be taken further in experi-

mentation when also adding deep learning models for the final ensemble system.

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II (700e) 0.501 4.0e−3 0.318 2.5e−3

Linear Regression 0.297 1.8e−3 0.226 3.5e−4

Polynomial Regression (d=7) 0.504 7.8e−4 0.229 3.5e−4

SVR (rbf) 0.314 4.4e−3 0.231 9.0e−4

3NN 0.609 2.1e−3 0.597 1.9e−4

Table 4.6: Correlation results for procedural scores and different models including regression as
ensemble meta-model

A visual representation of both the architecture II and 3NN models fully fulfilling

our aims in successfully learning from procedural scores and outperforming them in

both Pearson and Spearman metrics is included in the figure below.

103

Figure 4.4: Pearson and Spearman results across different ensembles outperforming procedural
scores

4.3 Robustness to Nonvalidated Samples I

We have seen the results of the previous models, both procedural and learning,

being applied to validated experimental data contained in CrisprSQL. There is,

however, still remaining the question as to how robust these different models are

to increasing amounts of nonvalidated samples in the validation sets. To reiterate

the concept, nonvalidated samples are simply samples in the data that show no off-

target activity and whose cleavage frequency is 0. From a machine learning point of

view these samples have labels 0 so increasing the fraction of nonvalidated samples

is equivalent to increasing the level of data imbalance towards samples with label

0. We implemented the 5 different validation scenarios outlined in the methodology

on the procedural scores and the selected architecture and 3NN model to observe

their robustness. A visual representation of those results is more appropriate and is

included below with a tabular detailed look at the values found in the Appendix. As

104

a reminder, the 1/0 scenario is the one that corresponds to no nonvalidated samples

in the validation sets, while the 1/250 one to 249 nonvalidated samples to every 1

validated sample in the validation sets.

Figure 4.5: Impact of nonvalidated samples on the generalisability or robustness of different models
as measured by Pearson coefficient

The same measurement repeated for Spearman coefficient:

Figure 4.6: Impact of nonvalidated samples on the generalisability or robustness of different models
as measured by Spearman coefficient

105

4.4 Deep Learning Models

So far we have used procedural scores as feature extractors from sequences, but now

we will turn to a more popular framework of learning from DNA, which is deep

learning models as abstract feature extractors. The first two such models we im-

plemented are the existing Lin and Wong models we adapted to our scenario and

termed Linn and LinnFNN3, the former corresponding to the CNN and the latter to

the MLP model respectively. After appropriate encoding and data transformation

for each of the models, the sgRNA-target pair sequence was used to train (both for

100 epochs) and test the models for off-target cleavage prediction, again measured

by Pearson and Spearman coefficients with the following results:

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II (700e) 0.501 4.0e−3 0.318 2.5e−3

3NN 0.609 2.1e−3 0.597 1.9e−4

LinnFNN3 0.646 4.1e−3 0.297 1.7e−3

Linn 0.646 7.2e−3 0.300 7.7e−3

Table 4.7: Correlation results for procedural scores and different deep learning and ensemble models

The loss functions for both models are included in the Appendix (Figure A.6, Figure

106

A.7) but they do show appropriate learning with some overfitting and saturation

behaviour that can be clipped by stopping learning at the 25th epoch for both

models. If we take a closer look at the predictions of each model, we can see each

has its strengths and weaknesses. The prediction plots of predicted vs true value for

Linn and LinnFNN3 is below:

Figure 4.7: Predictions of Linn model with true fit line highlighted

107

Figure 4.8: Predictions of LinnFNN3 model with true fit line highlighted

We then implemented our own version of the BGRU framework that has shown

great success with the on-target problem combining CNNs and RNNs and learning

from sequential data. The results are included below:

108

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II (700e) 0.501 4.0e−3 0.318 2.5e−3

3NN 0.609 2.1e−3 0.597 1.9e−4

LinnFNN3 0.646 4.1e−3 0.297 1.7e−3

Linn 0.646 7.2e−3 0.300 7.7e−3

BGRU 0.664 4.9e−3 0.316 2.6e−3

Table 4.8: Correlation results for procedural scores and different deep learning and ensemble models

The prediction behaviour of the BGRU is also included below:

Figure 4.9: Predictions of BGRU model with true fit line highlighted

109

We finally designed our own 2BGRU architecture that would combine the predictive

power of the BGRU framework with the siamese design learning from sequence pairs

separately instead of encoding them together into one input matrix before learning.

The results of our 2BGRU model are included below:

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II (700e) 0.501 4.0e−3 0.318 2.5e−3

3NN 0.609 2.1e−3 0.597 1.9e−4

LinnFNN3 0.646 4.1e−3 0.297 1.7e−3

Linn 0.646 7.2e−3 0.300 7.7e−3

BGRU 0.664 4.9e−3 0.316 2.6e−3

2BGRU 0.637 6.2e−3 0.318 2.6e−2

Table 4.9: Correlation results for procedural scores and different deep learning and ensemble models

And the prediction patterns of the 2BGRU model is also included below, with the

loss plots for these two models reserved for the Appendix (Figure A.8, Figure A.9).

110

Figure 4.10: Predictions of 2BGRU model with true fit line highlighted

4.5 Deep Learning Models and Ensemble I

The models above learn directly from genetic sequence data and nothing else to

make a regression prediction of the cleavage rate, but to answer the question on

how well these deep learning models integrate within an ensemble with procedural

scores, we obtained the following results. To reiterate, the deep learning models are

used similarly as the procedural methods as not just models for off-target activity

prediction but also as abstract feature extractors from sequences that will then be

used to train a meta-model for final off-target activity prediction. Since the archi-

tecture II proved to be the best performing wrapper for such a case, we will continue

to use it as the ensemble meta-model and add each of the deep learning models to

the system. Those results are included below in Table 4.10.

111

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II (700e) 0.501 4.0e−3 0.318 2.5e−3

3NN 0.609 2.1e−3 0.597 1.9e−4

LinnFNN3 0.646 4.1e−3 0.297 1.7e−3

Linn 0.646 7.2e−3 0.300 7.7e−3

BGRU 0.664 4.9e−3 0.316 2.6e−3

2BGRU 0.637 6.2e−3 0.318 2.6e−2

Ensemble w/ LinnFNN3 0.712 1.4e−3 0.330 2.9e−3

Ensemble w/ Linn 0.706 2.4e−3 0.333 5.9e−3

Ensemble w/ BGRU 0.714 2.2e−3 0.282 2.3e−3

Ensemble w/ 2BGRU 0.701 2.2e−3 0.293 6.9e−3

Table 4.10: Correlation results for procedural scores and different deep learning and ensemble
models

A more visual representation of the key results is provided in the figure below com-

paring the ensemble with the standalone deep learning model results:

112

Figure 4.11: Correlation results on deep learning and ensemble models

4.6 Deep Learning Models and Ensemble II

As we are also considering using kNN for the ensemble with considerable success

in the procedural case scenario, perhaps a similar framework might provide good

results with deep learning scores included as well. Following optimisation and ob-

taining minimum validation loss for k=3 as in the results above, implementing 3NN

on procedural and deep learning scores gives the following results:

113

Pearson Spearman

Model Mean Var Mean Var

CFD 0.208 1.6e−3 0.244 1.0e−3

MIT 0.211 1.9e−3 0.309 1.4e−4

CROPIT 0.005 4.8e−4 0.222 2.3e−4

CCTop 0.018 3.2e−4 0.254 1.7e−4

Architecture II 0.462 1.2e−3 0.290 2.1e−3

Architecture II (700e) 0.501 4.0e−3 0.318 2.5e−3

3NN 0.609 2.1e−3 0.597 1.9e−4

LinnFNN3 0.646 4.1e−3 0.297 1.7e−3

Linn 0.646 7.2e−3 0.300 7.7e−3

BGRU 0.664 4.9e−3 0.316 2.6e−3

2BGRU 0.637 6.2e−3 0.318 2.6e−2

Ensemble w/ LinnFNN3 0.712 1.4e−3 0.330 2.9e−3

Ensemble w/ Linn 0.706 2.4e−3 0.333 5.9e−3

Ensemble w/ BGRU 0.714 2.2e−3 0.282 2.3e−3

Ensemble w/ 2BGRU 0.701 2.2e−3 0.293 6.9e−3

3NN w/ LinnFNN3 0.657 2.5e−3 0.598 6.4e−5

3NN w/ Linn 0.660 2.1e−3 0.605 1.0e−4

3NN w/ BGRU 0.657 2.2e−3 0.605 8.1e−5

3NN w/ 2BGRU 0.674 1.7e−3 0.606 4.8e−4

Table 4.11: Correlation results for procedural scores and different deep learning and ensemble
models

Again, a similar visual representation comparing the deep learning and 3NN frame-

work results:

114

Figure 4.12: Correlation results on deep learning and 3NN ensemble models

4.7 Robustness to Nonvalidated Samples II

Similarly as in the primitive ensemble case, the deep learning models need to be

examined for their robustness to nonvalidated samples. We used the same testing

scenarios with increasing magnitudes of nonvalidated samples in the validation set

without using them in the training set to maintain the independent holdout nature

of the generalisation measurement. The below figure indicates the effect increasing

amounts of nonvalidated samples has on the performance of the 4 deep learning

models as measured by Pearson and Spearman:

115

Figure 4.13: Correlation results on deep learning models under inactive sites effect

Figure 4.14: Correlation results on deep learning models under inactive sites effect

To investigate the predictive patterns of the different deep learning models when

exposed to nonvalidated samples, we overlayed their predictions for non validated

samples in the 1/1 scenario. The green dots represent the predictions for nonvali-

dated samples (their true label is always 0) in the below prediction plots for each

deep learning model.

116

Figure 4.15: Predictions of Linn model with true fit line highlighted including nonvalidated samples

Figure 4.16: Predictions of LinnFNN3 model with true fit line highlighted including nonvalidated
samples

117

Figure 4.17: Predictions of BGRU model with true fit line highlighted including nonvalidated
samples

Figure 4.18: Predictions of 2BGRU model with true fit line highlighted including nonvalidated
samples

Going further and exploring a similar impact on the ensemble systems combining

the procedural scores and deep learning we obtained the following results (Spearman

118

results in Appendix Figure A.10):

Figure 4.19: Correlation results on ensemble models under inactive sites effect

The 3NN shows a similar behaviour under the inactive sites regime but with impor-

tant differences with the Spearman figure in the Appendix (A.11):

Figure 4.20: Correlation results on 3NN models under inactive sites effect

Since the BGRU model showed considerable resistance to nonvalidated samples in

Figure 4.13, and because BGRU and LinnFNN3 show different patterns of predic-

119

tions highlighted in the last section, a further question to answer is whether an

ensemble combining both of these deep learning models might provide a unique ad-

vantage. The figures below show the results of the experiment for both the ensemble

and 3NN methods (Spearman results are in the Appendix under A.12 and A.13, they

show a similar pattern):

Figure 4.21: Correlation results on ensemble models under inactive sites effect with two deep
learning models

Figure 4.22: Correlation results on 3NN models under inactive sites effect with two deep learning
models

120

Tables with detailed listing of measures can be found in the Appendix (Table A.2,

Table A.3, Table A.4).

4.8 Binary Classifier and Hierarchical Model

The impact of the nonvalidated samples on the predictive power of all models is

unmistakeable so instead of forcing regression models like the above to learn both a

discriminatory decision boundary for validated and nonvalidated samples while also

learning a good fit for the validation samples, we broke up the problem into separate

challenges. The first is a preconditioning step that would classify the samples as

either validated or nonvalidated and then pass the predicted validated samples to

the regression models we developed above for off-target activity prediction. The aim

is then that this system will dent the curve of the drop in performance with increas-

ing amounts of nonvalidated samples present in the validation set of the regression

models.

The search for a reasonably good binary classifier that would be able to separate

nonvalidated from validated samples has been quite challenging. Through careful

hyperparameter tuning, a neural network regression model has been optimised for

the task through Weights and Biases. Logistic regression was optimised through

simple grid search and resorting to Weights and Biases was not necessary. The

figure below indicates the result from including each of the binary classification

models separately as a preconditioning module for the ensemble system in both

121

single deep learning model and two deep learning model cases. Look to Tables A.5

and A.6 in Appendix for detailed numerical results.

Figure 4.23: Correlation results in Pearson showing mitigation of inactive site effect through use
of preconditioning model

Since the logistic regression model provides good preconditioning performance in

addition to being less computationally expensive, that is our binary classifier of

choice deployed in the final system. With the last hierarchical model, we conclude

our main results. There were secondary experiments undertaken throughout the

project, some of which are included in the Appendix and which do not represent

significant contributions of the project or the fulfillment of the targeted aims. Build-

ing on those results to answer further questions will be left to the comments on the

future direction outlined in the conclusion.

122

Discussion

5.1 Procedural Scores and Ensembles

Having successfully applied the procedural scores to the CrisprSQL data as ob-

served in Table 4.1 where MIT is the best performing model across both Pearson

and Spearman correlation measurements, we note that CROPIT and CCTop have

a much lower Pearson coefficient. This is due to a large number of PAM sites

present in CrisprSQL that have not been included in the experimental validation

studies used when assigning weights to those two methods. PAM sites that are not

‘NGG’ or ‘NNG’ will be classified as outliers according to these two methods and

hence their Pearson coefficient will be a lot more affected by this behaviour than

Spearman due to its sensitivity to outliers [78]. The MIT score is the foundational

procedural method that has been extensively experimentally validated to assign po-

sitional mismatch weights to target sequences, thus its generalisability to a dataset

like CrisprSQL that contains a multitude of different experimental data is much

higher than for the other more recent methods. The following step was to develop

a primitive ensemble architecture capable of outperforming each of the procedural

123

scores when it comes to off-target activity prediction. Out of 4 candidate neural

network architectures, architecture II proved to be best suited with great learning

performance. The selected model achieved Pearson performance over 2 times higher

than the best procedural score while also outperforming MIT as measured by Spear-

man correlation which can be seen in Table 4.5.

Looking at other substitutes for the ensemble model like regression, SVR, and kNN,

we see in Table 4.6 that polynomial regression can compete with architecture II

when measured by Pearson. It is important to note that Pearson is measuring the

linearity between the true and predicted target value, not between the target and

the input which can allow for a nonlinear model like polynomial regression to predict

values that are more linearly correlated with the true target values. Its Spearman

measure is much lower, however, not being any better than the linear regression

model meaning it has a harder time capturing the ordinal or rank correlation be-

tween prediction and truth. The 3NN outperforming architecture II might come as

a surprise initially but when we think about the predictions of the kNN algorithm

being existing values found in the dataset and then averaged versus approximations

which neural network predictions are, then higher correlation between those existing

values and true values of the dataset are not surprising. The kNN algorithm is a

non-parametric model that does not learn the type of analytical function meant to

describe the input-target relationship neural networks approximate which can be

harder to do in this case. They key evidence will come later when we investigate

the robustness of these models to nonvalidated samples which are not part of this

124

dataset consisting of only validated samples. Since nonvalidated samples need to

be given a target of exactly 0 (due to nonvalidated or inactive sites having no off-

target or cleavage activity), the 3NN will have an easier time doing so due to it

only assigning averages of existing values which includes a lot of 0 targets in the

validated samples set. The neural network will be less robust in this case as its an-

alytical function is just an approximation of an assumed relationship between input

and target, so it will not be predicting exactly 0 but rather a small value closer or

farther from it. This leads to a higher robustness of the 3NN model as confirmed in

Figure 4.5 with the Pearson measure more sensitive to those ”outliers” the neural

network predictions are.

The main takeaway of the 3NN model, however, is its much larger Spearman cor-

relation result and that it significantly helps with obtaining the best result on that

metric as seen in Figure 4.12.The inversion of the Spearman correlation for the CFD

score indicates that this procedural method is negatively correlated to the rank or-

dering of off-target activity as seen in Figure 4.6. That could be a consequence of the

PAM sites present in the nonvalidated samples that are not supported by the CFD

method causing those samples to be allocated a score of 0 when in fact it should be

much higher. With subsequent scenarios when the number of nonvalidated samples

increases, there is less of those PAM edge cases present and the CFD approaches the

behaviour of the other procedural methods. In sum, both procedural and ensem-

ble models are highly sensitive to the presence of nonvalidated samples and despite

3NN being a lot more robust in this regard, it still presents a challenge to dent the

125

robustness curve and mitigate the negative impacts on performance by nonvalidated

samples.

Now that we have a successful learning model able to combine each of the different

procedural scores together for improved activity prediction, using Shapley values

analysis in Figure 4.3 shows that CCTop and CROP-IT are the most important

features affecting the prediction of the neural network ensemble. Since those two

methods are meant to be improvements on MIT and CFD that included experi-

mental validation of DNA attributes beyond just sequence information, their large

contribution to the model predictions comes as no surprise. CCTop being the most

impactful feature supports this argument as it also follows a similar approach where

it punishes more when the mismatches are closer to the PAM site (higher positional

mismatch weights) and it is also a kind of weighted sum. Both of these methods

rely on weights derived experimentally, albeit through two different methodologies,

where higher weighting is given to mismatches closer to the PAM site and in the case

of CROP-IT also the density of the mismatches i.e. their relative distance to each

other on the sequence. This indicates that effective off-target activity prediction

can specifically focus on sequence mismatches, proportionally weighting those closer

to the PAM site and taking into account the mismatch distribution on the entire

sequence. Recent studies also indicate that the most frequent mismatches resulting

in off-target activity do occur at the PAM proximal end of the target sequence [79].

126

5.2 Deep Learning Models

The previous set of aims concerned using the standard procedural methods as feature

extractors to a neural network or kNN ensemble model, but deep learning models also

exist to directly extract information or abstract features from sequences for activity

prediction. We first present the Linn and LinnFNN3 models which are adaptations

of the Lin and Wong architectures and which show excellent learning performance

when compared to both procedural scores and our primitive ensembles (Table 4.7).

Looking at each of the model’s prediction patterns in Figures 4.7 and 4.8, we see

that Linn is more likely to overestimate predictions while LinnFNN3 underestimates.

Moving forward, we implemented the BGRU model for off-target activity prediction

for the first time since it was suggested as a model for the on-target activity scheme.

It outperforms the other deep learning models as seen in Table 4.8 supporting the

idea that a mixture of convolutional and bidirectional sequential learning does offer

some advantage to learning from genetic sequences in the off-target problem. The

BGRU, similarly to the Linn model, also tends to overestimate the prediction and it

struggles with more sensitive predictions closer to 0 or below off-target activity levels

of 0.005 (Figure 4.9). And, finally, we implemented our own architecture using the

siamese framework with the BGRU’s predictive power to achieve the best Spearman

result outperforming all previous models while its Pearson result is slightly lower

(Table 4.9). Similarly to BGRU, it also overestimates but it does not suffer from

the challenge of making predictions closer to 0 so in that respect is more sensitive

to lower off-target activity (Figure 4.10).

127

Implementing these deep learning models as part of an ensemble like the one above

with procedural scores leads to an improvement of performance across all models

as measured by the Pearson coefficient. The BGRU and 2BGRU do slightly suffer

from a decrease in Spearman correlation but it still places them comparatively close

to the best-performing models. When we look at using the 3NN model as the en-

semble, that problem is alleviated with the Spearman metric vastly outperforming

the deep learning model on its own. Figures 4.11 and 4.12 show these results and

supports our idea that ensembles with deep learning and procedural models improve

the off-target activity prediction capabilities of the system across both Pearson and

Spearman correlation metrics.

When we look at the robustness of the deep learning models to nonvalidated samples,

the BGRU shows a greater resilience especially on the Pearson correlation metric.

This will become important later when we want to design and implement robust en-

sembles with multiple deep learning models making BGRU an inevitable candidate

in those systems. Figure 4.13 also shows that deep learning models, similar to proce-

dural scores and the primitive ensemble, suffer from a lack of generalisability to set

containing increasing amounts of nonvalidated samples. This behaviour is repeated

when they are part of an ensemble system as well as shown in Figures 4.19 and 4.20.

These results suggest there are inherent attributes present in nonvalidated samples

that are not captured when learning from validated samples. The prediction patterns

of the deep learning models for nonvalidated samples reiterate LinnFNN3’s tendency

to underestimate while being more confident with predictions closer to 0 than the

128

other models while Linn, BGRU, and 2BGRU overestimate on nonvalidated samples

as well as validated ones. Creating an ensemble system combining LinnFNN3 and

one of the other 3 models like in the case of Ensemble+BGRU+LinnFNN3 might

offer a predictive edge where those weaknesses of each model might be compensated

for by each other. The results in Figures 4.21 and 4.22 show that this approach does

work with the LinnFNN3+BGRU system in both neural network and 3NN cases

outperforming the individual model ensembles and having a higher robustness to

nonvalidated samples up to an entire order of magnitude.

5.3 Robustness to Nonvalidated Samples

We have seen that besides the ensemble model with LinnFNN3 and BGRU, all

of the other models suffer largely from the consequences of including nonvalidated

samples at levels creating data imbalance. The issue could come from too stringent

of a scenario being imposed on these models where they both have to separate

nonvalidated and validated samples while also allocating an off-target activity score

to the validated samples. Breaking this problem into two parts where the former is

to be tackled through a preconditioning model like logistic regression being able to

separate at least some of the nonvalidated samples out and increase the robustness

of the overall system. This approach proved successful and we obtained the most

significant results of the project in Figure 4.23 which shows that with the system

consisting of the Ensemble+BGRU+LinnFNN3 as a regressor and logistic regression

as a preconditioning module, the robustness to nonvalidated samples up to an entire

129

order magnitude can be achieved. The drop in Pearson for that large range is around

0.08 with the highest achieved Pearson correlation yet for the validated samples

of 0.73. A similar pattern is observed for the Ensemble+ LinnFNN3 case across

both Pearson and Spearman measures. One could argue both models also show

sufficiently good performance even for two orders of magnitude more nonvalidated

samples (1/100 scenario) with the Ensemble+LinnFNN3 maintaining a stable 0.5

Pearson correlation and 0.16 Spearman correlation which is about a half of the best

performing model under the scenario of no nonvalidated samples.

130

Conclusions

As the preceding discussion shows, the results go beyond our original aims but here

we will reiterate how our experiments indicate the fulfillment of our investigative ob-

jectives. Firstly, we originally applied 4 procedural methods to the entire CrisprSQL

dataset and compared them respectively as well as proposed a simple neural network

and kNN model that can combine these procedural scores as features into a more

powerful system capable of predicting off-target activity better than either of the

procedural methods as measured by both Pearson and Spearman correlation coeffi-

cients. The 3NN model showed excellent results capable of comparing across both

metrics to deep learning models that learn from sequences directly. We then under-

took Shapley value analysis to obtain the most insightful procedural scores in this

system allowing us to make deductions on what areas or attributes of the sequence

and the DNA contribute more to the off-target activity levels without looking at the

sequences directly.

Secondly, we implemented two existing off-target deep learning models to the CrisprSQL

dataset alongside our adaptation of the BGRU on-target framework to the off-target

131

scenario while comparing all of these models to our own 2BGRU siamese network

architecture. The 2BGRU showed similar predictive capability as the other more

standard models and its predictions did not suffer from an inability to make pre-

dictions for smaller off-target activity levels like the BGRU did. All of the above

models are greatly impacted by an increasing data imbalance in favor of nonvalidated

samples which is a so far unresolved problem in the field. To attempt to provide

a robust solution to this challenge, we designed a hierarchical model with a simple

logistic regression model as a preconditioner to greatly increase the robustness of our

models with the Ensemble+BGRU+LinnFNN3 indicating minimal negative impact

on performance up to even an entire order of magnitude more nonvalidated samples.

We have been positively surprised by the great predictive performance of simpler,

less computationally expensive, machine learning models showed on this set of prob-

lems. The key to our ensemble design and getting the final hierarchical system was

looking at the prediction patterns of the different models and combining them in a

manner where one of the model’s weaknesses could be compensated for by another’s

like in the case of the BGRU and LinnFNN3. Our results obtaining an average 0.64

Pearson correlation on a heavily imbalanced dataset with 10 times as many nonva-

lidated samples outperforms a similar study done by researchers last year without

having to resort to bias-inducing artificial oversampling techniques [80]. Further

work can be done on using more advanced preconditioning strategies to attempt

to separate the nonvalidated samples better before off-target activity prediction by

regression models but the conclusion is that models can be constructed to achieve

132

this robustness without applying additional restraints on the data.

In all of the studies presented here we restricted ourselves to using only nucleotide

sequences to make predictions, whether it be for procedural methods or deep learn-

ing models. Future work can try to incorporate energy measurements, chromatin

attributes, and PAM regions as features into the learning process that might allow

the models to achieve even higher predictive capability. Our brief look at explain-

ability when it comes to procedural scores indicated that positional mismatches and

their density might play a bigger role than those sequence-extraneous features but

further study is required. We also only scratched the surface of utilising siamese

networks to learn from sequence pairs and thereby circumnavigating the need for

OR encoding. Future experiments can try with simpler siamese networks that will

tend less to overfit and will be of a much smaller parameter size to allow for more ef-

ficient computation. The study of specificity of CRISPR/Cas9 is of high importance

to designing safe and scalable gene editing technology and by leveraging the different

facets of machine learning together, we can develop robust tools to aid in that design.

133

Appendix

Figure A.1: Training and testing loss for architecture III

134

Figure A.2: Training and testing loss for architecture IV with batch normalisation

Figure A.3: Training and testing loss for architecture II with batch normalisation trained for 700
epochs

135

Figure A.4: Validation for degree search of polynomial regression (optimal is d=7)

Figure A.5: Validation for degree search of SVR (optimal is rbf)

136

Figure A.6: Loss behaviour of Linn model

Figure A.7: Loss behaviour of LinnFNN3 model

137

Figure A.8: Loss behaviour of BGRU model

Figure A.9: Loss behaviour of 2BGRU model

138

Figure A.10: Correlation results for Spearman under ensemble scheme under inactive site effect

Figure A.11: Correlation results for Spearman under 3NN scheme under inactive site effect

139

Figure A.12: Correlation results for Spearman under ensemble scheme under inactive site effect
with two deep learning models

Figure A.13: Correlation results for Spearman under 3NN scheme under inactive site effect with
two deep learning models

140

Pearson Spearman

Model Mean Var Mean Var

CFD (1/250) 0.019 1.0e−2 -0.085 3.4e−4

MIT (1/250) 0.012 1.0e−3 0.005 1.4e−4

CROPIT (1/250) -0.001 5.8e−4 0.000 3.2e−4

CCTop (1/250) -0.003 6.8e−4 0.009 2.3e−4

CFD (1/100) 0.050 1.2e−2 -0.116 7.3e−4

MIT (1/100) 0.024 9.0e−4 0.009 2.9e−4

CROPIT (1/100) 0.007 5.3e−4 -0.001 7.8e−4

CCTop (1/100) 0.008 4.4e−4 0.008 9.0e−4

CFD (1/10) 0.132 9.4e−3 -0.352 4.8e−4

MIT (1/10) 0.082 3.1e−3 0.029 1.0e−4

CROPIT (1/10) 0.006 1.0e−3 -0.002 5.8e−4

CCTop (1/10) 0.008 9.6e−4 0.035 6.3e−4

CFD (1/1) 0.190 3.1e−3 -0.499 3.2e−4

MIT (1/1) 0.146 2.0e−3 0.122 2.6e−4

CROPIT (1/1) 0.003 9.6e−4 0.064 6.8e−4

CCTop (1/1) 0.007 5.2e−4 0.128 6.8e−4

CFD (1/0) 0.208 1.6e−3 0.244 1.0e−3

MIT (1/0) 0.211 1.9e−3 0.309 1.4e−4

CROPIT (1/0) 0.005 4.8e−4 0.222 2.3e−4

CCTop (1/0) 0.018 3.2e−4 0.254 1.7e−4

Architecture II (1/250) 0.004 1.4e−4 0.009 1.7e−4

Architecture II (1/100) 0.027 9.0e−4 0.030 4.0e−4

Architecture II (1/10) 0.111 7.2e−3 0.049 2.8e−3

Architecture II (1/1) 0.243 5.6e−3 0.156 1.4e−2

Architecture II (1/0) 0.462 1.2e−3 0.290 2.1e−3

3NN (1/250) 0.076 1.2e−2 -0.010 1.9e−4

3NN (1/100) 0.166 2.0e−2 -0.021 1.9e−4

3NN (1/10) 0.416 3.4e−2 -0.036 6.7e−4

3NN (1/1) 0.553 2.9e−3 0.117 7.3e−4

3NN (1/0) 0.609 2.1e−3 0.597 1.9e−4

Table A.1: Impact of nonvalidated samples on predictive performance of different methods

141

Pearson Spearman

Model Mean Var Mean Var

LinnFNN3 (1/250) 0.075 1.8e−2 0.001 5.8e−4

LinnFNN3 (1/100) 0.168 2.1e−2 0.005 1.7e−3

LinnFNN3 (1/10) 0.490 2.3e−2 0.027 5.5e−3

LinnFNN3 (1/1) 0.612 9.0e−3 0.105 4.8e−3

LinnFNN3 (1/0) 0.646 4.1e−3 0.297 1.7e−3

Linn (1/250) 0.094 2.4e−2 0.014 2.9e−4

Linn (1/100) 0.266 7.6e−2 0.043 1.5e−3

Linn (1/10) 0.560 3.5e−2 0.065 1.0e−2

Linn (1/1) 0.612 9.0e−3 0.216 6.0e−3

Linn (1/0) 0.646 7.2e−3 0.300 5.8e−4

BGRU (1/250) 0.259 1.3e−1 -0.018 5.8e−4

BGRU (1/100) 0.510 4.8e−2 0.027 9.0e−4

BGRU (1/10) 0.626 2.3e−2 0.124 1.7e−2

BGRU (1/1) 0.650 8.6e−3 0.164 1.4e−2

BGRU (1/0) 0.664 4.9e−3 0.316 2.6e−3

2BGRU (1/250) 0.020 1.0e−3 -0.024 7.8e−4

2BGRU (1/100) 0.138 6.2e−2 0.016 1.1e−3

2BGRU (1/10) 0.558 5.6e−2 0.088 7.4e−3

2BGRU (1/1) 0.608 1.3e−2 0.017 1.8e−2

2BGRU (1/0) 0.637 6.2e−3 0.318 2.6e−2

Table A.2: Impact of nonvalidated samples on predictive performance of different methods includ-
ing deep learning models

142

Pearson Spearman

Model Mean Var Mean Var

Ensemble w/ LinnFNN3 (1/250) 0.020 1.8e−2 0.002 5.8e−4

Ensemble w/ LinnFNN3 (1/100) 0.135 2.1e−2 0.025 1.7e−3

Ensemble w/ LinnFNN3 (1/10) 0.400 2.3e−2 0.024 5.5e−3

Ensemble w/ LinnFNN3 (1/1) 0.613 9.0e−3 0.156 4.8e−3

Ensemble w/ LinnFNN3 (1/0) 0.712 4.1e−3 0.330 1.7e−3

Ensemble w/ Linn (1/250) 0.010 4.8e−4 0.009 6.8e−4

Ensemble w/ Linn (1/100) 0.122 2.7e−2 0.016 9.0e−4

Ensemble w/ Linn (1/10) 0.300 3.0e−2 0.013 5.2e−3

Ensemble w/ Linn (1/1) 0.590 6.2e−3 0.193 2.0e−2

Ensemble w/ Linn (1/0) 0.706 2.4e−3 0.333 5.9e−3

Ensemble w/ BGRU (1/250) 0.017 1.0e−3 0.010 5.3e−4

Ensemble w/ BGRU (1/100) 0.131 4.2e−2 0.002 9.6e−4

Ensemble w/ BGRU (1/10) 0.407 3.1e−2 0.027 8.8e−3

Ensemble w/ BGRU (1/1) 0.571 1.1e−2 0.115 8.6e−3

Ensemble w/ BGRU (1/0) 0.714 2.2e−3 0.282 2.3e−3

Ensemble w/ 2BGRU (1/250) 0.024 5.8e−4 -0.002 5.8e−4

Ensemble w/ 2BGRU (1/100) 0.108 1.5e−2 0.029 5.2e−3

Ensemble w/ 2BGRU (1/10) 0.300 3.0e−2 0.013 5.2e−3

Ensemble w/ 2BGRU (1/1) 0.514 1.8e−2 0.108 1.7e−2

Ensemble w/ 2BGRU (1/0) 0.701 2.2e−3 0.293 6.9e−3

Ensemble w/ BGRU+LinnFNN3 (1/250) 0.044 8.6e−3 0.006 7.8e−4

Ensemble w/ BGRU+LinnFNN3 (1/100) 0.141 3.5e−2 0.007 1.0e−3

Ensemble w/ BGRU+LinnFNN3 (1/10) 0.502 4.7e−2 0.027 8.1e−3

Ensemble w/ BGRU+LinnFNN3 (1/1) 0.637 1.0e−2 0.142 2.5e−2

Ensemble w/ BGRU+LinnFNN3 (1/0) 0.729 2.1e−3 0.339 4.5e−3

Table A.3: Impact of nonvalidated samples on predictive performance of different methods includ-
ing deep learning ensemble models

143

Pearson Spearman

Model Mean Var Mean Var

3NN w/ LinnFNN3 (1/250) 0.087 1.9e−2 0.009 2.6e−4

3NN w/ LinnFNN3 (1/100) 0.259 4.0e−2 0.018 3.6e−4

3NN w/ LinnFNN3 (1/10) 0.583 3.7e−2 0.024 4.8e−4

3NN w/ LinnFNN3 (1/1) 0.607 4.5e−3 0.127 7.3e−4

3NN w/ LinnFNN3 (1/0) 0.657 2.5e−3 0.598 6.4e−5

3NN w/ Linn (1/250) 0.111 1.8e−2 0.008 2.6e−4

3NN w/ Linn (1/100) 0.226 4.9e−2 0.015 4.0e−4

3NN w/ Linn (1/10) 0.540 3.4e−2 0.032 3.2e−4

3NN w/ Linn (1/1) 0.628 5.8e−3 0.132 4.8e−4

3NN w/ Linn (1/0) 0.660 2.1e−3 0.605 1.0e−4

3NN w/ BGRU (1/250) 0.092 2.3e−2 -0.006 3.2e−4

3NN w/ BGRU (1/100) 0.264 3.0e−2 0.021 3.2e−4

3NN w/ BGRU (1/10) 0.566 3.4e−2 0.035 7.3e−4

3NN w/ BGRU (1/1) 0.618 6.9e−3 0.127 6.8e−4

3NN w/ BGRU (1/0) 0.657 2.2e−3 0.605 8.1e−5

3NN w/ 2BGRU (1/250) 0.090 1.5e−2 -0.006 2.0e−4

3NN w/ 2BGRU (1/100) 0.244 4.1e−2 0.019 2.6e−4

3NN w/ 2BGRU (1/10) 0.569 4.1e−2 0.041 4.4e−4

3NN w/ 2BGRU (1/1) 0.612 4.8e−3 0.118 4.8e−4

3NN w/ 2BGRU (1/0) 0.674 1.7e−3 0.606 1.2e−4

3NN w/ BGRU+LinnFNN3 (1/250) 0.073 2.5e−2 0.011 2.6e−4

3NN w/ BGRU+LinnFNN3 (1/100) 0.244 5.1e−2 0.027 4.4e−4

3NN w/ BGRU+LinnFNN3 (1/10) 0.604 2.7e−2 0.013 7.8e−4

3NN w/ BGRU+LinnFNN3 (1/1) 0.627 4.9e−3 0.136 7.8e−4

3NN w/ BGRU+LinnFNN3 (1/0) 0.687 1.8e−3 0.597 4.9e−5

Table A.4: Impact of nonvalidated samples on predictive performance of different methods includ-
ing deep learning 3NN ensemble models

144

Pearson Spearman

Model Mean Var Mean Var

3NN w/ LinnFNN3 (1/250) 0.079 2.6e−2 0.012 9.6e−4

3NN w/ LinnFNN3 (1/100) 0.250 5.6e−2 0.021 5.8e−4

3NN w/ LinnFNN3 (1/10) 0.624 3.8e−2 0.001 1.5e−2

3NN w/ LinnFNN3 (1/1) 0.596 5.5e−3 0.134 1.6e−3

3NN w/ LinnFNN3 (1/0) 0.657 2.5e−3 0.598 6.4e−5

Ensemble w/ Linn FNN3 (1/250) 0.032 3.0e−3 0.001 1.3e−3

Ensemble w/ Linn FNN3 (1/100) 0.219 7.8e−2 0.012 2.9e−4

Ensemble w/ Linn FNN3 (1/10) 0.535 6.2e−2 0.104 6.6e−3

Ensemble w/ Linn FNN3 (1/1) 0.644 1.0e−2 0.163 9.2e−3

Ensemble w/ LinnFNN3 (1/0) 0.712 4.1e−3 0.330 1.7e−3

Table A.5: Impact of nonvalidated samples on predictive performance of different ensemble models
using neural network as binary classifier for inactive site separation

Pearson Spearman

Model Mean Var Mean Var

3NN w/ LinnFNN3 (1/250) 0.232 1.1e−1 0.021 9.0e−4

3NN w/ LinnFNN3 (1/100) 0.398 1.8e−1 0.032 3.2e−3

3NN w/ LinnFNN3 (1/10) 0.628 3.2e−2 0.056 2.9e−2

3NN w/ LinnFNN3 (1/1) 0.608 5.9e−3 0.091 6.3e−2

3NN w/ LinnFNN3 (1/0) 0.657 2.5e−3 0.598 6.4e−5

Ensemble w/ Linn FNN3 (1/250) 0.104 3.0e−2 0.001 5.2e−3

Ensemble w/ Linn FNN3 (1/100) 0.497 1.1e−1 0.150 5.2e−2

Ensemble w/ Linn FNN3 (1/10) 0.611 3.5e−2 0.063 2.1e−1

Ensemble w/ Linn FNN3 (1/1) 0.674 4.8e−3 0.177 1.7e−2

Ensemble w/ LinnFNN3 (1/0) 0.712 4.1e−3 0.330 1.7e−3

Ensemble w/ BGRU+LinnFNN3 (1/250) 0.161 6.2e−2 0.058 3.0e−2

Ensemble w/ BGRU+LinnFNN3 (1/100) 0.416 8.8e−2 0.097 4.2e−2

Ensemble w/ BGRU+LinnFNN3 (1/10) 0.638 2.3e−2 0.041 1.6e−1

Ensemble w/ BGRU+LinnFNN3 (1/1) 0.670 6.7e−3 0.043 2.2e−1

Ensemble w/ BGRU+LinnFNN3 (1/0) 0.729 2.1e−3 0.339 4.5e−3

Table A.6: Impact of nonvalidated samples on predictive performance of different ensemble models
using logistic regression as binary classifier for inactive site separation

145

Models Optimiser Architecture

Architecture
I (MLP)

Adam
1e-2
512
100e

Input
Latents
Network

4.
5.
FC 4. ReLU activation.

Architecture
II (MLP)

Adam
1e-2
512
100e

Input
Latents
Network

4.
16.
FC 4. ReLU activation.

Architecture
III (MLP)

Adam
5e-3
64
100e

Input
Latents
Network

4.
5.
FC 10. ReLU activation.

Architecture
IV (MLP)

Adam
5e-3
128
100e

Input
Latents
Network

4.
16.
FC 10. ReLU activation.

LinnFNN3 Adam
1e-3
100
100e

Input
Latents
Network

80 (flattened 4x20).
50, 20, 10.
FC 3. ReLU activation.

Linn Adam
1e-3
100
100e

Input
Latents
Network

4x20.
Conv 10x1x() 4x, MP 1x5, 100, 23.
FC 2. ReLU activation.

BGRU Adam
1e-3
256
100e

Input
Latents
Network

20x4.
Conv 256, BGRU 256, 128, 64, 40, 1.
FC 4. ReLU activation.

2BGRU Adam
5e-3
512
100e

Input
Latents
Network

20x4.
2x(Conv 256, BGRU 256, 128, 64, 40), 1.
FC 2x(4). ReLU activation.

Table A.7: Model Architecture Details

146

Models Optimiser

Architecture II
/
LinnFNN3

Adam
5e-2/1e-3
256/100
100e/25e

Architecture II
/
Linn

Adam
5e-2/1e-3
512/100
100e/25e

Architecture II
/
BGRU

Adam
1e-2/1e-3
512/256
100e/25e

Architecture II
/
2BGRU

Adam
1e-2/5e-3
512/512
100e/25e

Architecture II
/
BGRU
/
LinnFNN3

Adam
1e-2/1e-3/1e-3
512/256/100
100e/25e/25e

Logistic Regression l2
C = 1
liblinear
threshold = 0.917

Table A.8: Model Architecture Details (continued)

147

List of Figures

1.1 Steps for CRISPR/Cas9 Gene Editing [5] 9

2.1 Structure of nucleotides [14] . 19

2.2 CRISPR gene editing at position 18 of target sequence [13] 22

2.3 Encoding schema for sequences [7] . 33

2.4 Artificial Neuron [37] . 41

2.5 An example MLP [37] . 42

2.6 An example CNN [41] . 45

2.7 An example RNN [37] . 47

2.8 An example GRU unit [44] . 47

2.9 Bidirectional layer logic . 49

2.10 Example of a Stacking Architecture [66] 62

3.1 ROC of Procedural Scores on A Collection of Genomic Datasets [18] . 69

3.2 ROC of Procedural Scores on A Collection of Genomic Datasets Re-

produced . 69

3.3 OR encoding of sgRNA-target sequence pair [6] 74

3.4 CNN std architecture from which Linn model was adapted [6] 75

148

3.5 Our BGRU Architecture adapted from [77] 78

3.6 Our 2BGRU architecture built on the proposed BGRU model 80

3.7 Primitive ensemble method for score feature learning 82

3.8 Our ensemble design with procedural scores and deep learning se-

quence models . 85

3.9 Hierarchical system for robust off-target activity prediction 88

4.1 Training and testing loss for architecture IV 99

4.2 Training and testing loss for architecture II trained for 700 epochs . . 101

4.3 Feature importance according to shapley values of procedural scores

in ensemble . 102

4.4 Pearson and Spearman results across different ensembles outperform-

ing procedural scores . 104

4.5 Impact of nonvalidated samples on the generalisability or robustness

of different models as measured by Pearson coefficient 105

4.6 Impact of nonvalidated samples on the generalisability or robustness

of different models as measured by Spearman coefficient 105

4.7 Predictions of Linn model with true fit line highlighted 107

4.8 Predictions of LinnFNN3 model with true fit line highlighted 108

4.9 Predictions of BGRU model with true fit line highlighted 109

4.10 Predictions of 2BGRU model with true fit line highlighted 111

4.11 Correlation results on deep learning and ensemble models 113

4.12 Correlation results on deep learning and 3NN ensemble models 115

4.13 Correlation results on deep learning models under inactive sites effect 116

149

4.14 Correlation results on deep learning models under inactive sites effect 116

4.15 Predictions of Linn model with true fit line highlighted including non-

validated samples . 117

4.16 Predictions of LinnFNN3 model with true fit line highlighted includ-

ing nonvalidated samples . 117

4.17 Predictions of BGRU model with true fit line highlighted including

nonvalidated samples . 118

4.18 Predictions of 2BGRU model with true fit line highlighted including

nonvalidated samples . 118

4.19 Correlation results on ensemble models under inactive sites effect . . 119

4.20 Correlation results on 3NN models under inactive sites effect 119

4.21 Correlation results on ensemble models under inactive sites effect with

two deep learning models . 120

4.22 Correlation results on 3NN models under inactive sites effect with

two deep learning models . 120

4.23 Correlation results in Pearson showing mitigation of inactive site ef-

fect through use of preconditioning model 122

A.1 Training and testing loss for architecture III 134

A.2 Training and testing loss for architecture IV with batch normalisation 135

A.3 Training and testing loss for architecture II with batch normalisation

trained for 700 epochs . 135

A.4 Validation for degree search of polynomial regression (optimal is d=7) 136

A.5 Validation for degree search of SVR (optimal is rbf) 136

150

A.6 Loss behaviour of Linn model . 137

A.7 Loss behaviour of LinnFNN3 model 137

A.8 Loss behaviour of BGRU model . 138

A.9 Loss behaviour of 2BGRU model . 138

A.10 Correlation results for Spearman under ensemble scheme under inac-

tive site effect . 139

A.11 Correlation results for Spearman under 3NN scheme under inactive

site effect . 139

A.12 Correlation results for Spearman under ensemble scheme under inac-

tive site effect with two deep learning models 140

A.13 Correlation results for Spearman under 3NN scheme under inactive

site effect with two deep learning models 140

151

References

[1] L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu,
X. Wu, W. Jiang, L. A. Marraffini, et al., “Multiplex genome engineering using
crispr/cas systems,” Science, vol. 339, no. 6121, pp. 819–823, 2013.

[2] H. Ma, N. Marti-Gutierrez, S.-W. Park, J. Wu, Y. Lee, K. Suzuki, A. Koski,
D. Ji, T. Hayama, R. Ahmed, et al., “Correction of a pathogenic gene mutation
in human embryos,” Nature, vol. 548, no. 7668, pp. 413–419, 2017.

[3] R. S. Shapiro, A. Chavez, C. B. Porter, M. Hamblin, C. S. Kaas, J. E. DiCarlo,
G. Zeng, X. Xu, A. V. Revtovich, N. V. Kirienko, et al., “A crispr–cas9-based
gene drive platform for genetic interaction analysis in candida albicans,” Nature
microbiology, vol. 3, no. 1, pp. 73–82, 2018.

[4] Q. Liu, X. Cheng, G. Liu, B. Li, and X. Liu, “Deep learning improves the
ability of sgrna off-target propensity prediction,” BMC bioinformatics, vol. 21,
no. 1, pp. 1–15, 2020.

[5] “Addgene: Crispr guide.” https://www.addgene.org/guides/crispr/. (Accessed
on 02/08/2021).

[6] J. Lin and K.-C. Wong, “Off-target predictions in crispr-cas9 gene editing using
deep learning,” Bioinformatics, vol. 34, no. 17, pp. i656–i663, 2018.

[7] G. Chuai, H. Ma, J. Yan, M. Chen, N. Hong, D. Xue, C. Zhou, C. Zhu, K. Chen,
B. Duan, et al., “Deepcrispr: optimized crispr guide rna design by deep learn-
ing,” Genome biology, vol. 19, no. 1, pp. 1–18, 2018.

[8] F. Störtz and P. Minary, “crisprsql: a novel database platform for crispr/cas
off-target cleavage assays,” Nucleic Acids Research, vol. 49, no. D1, pp. D855–
D861, 2021.

[9] N. Hoque, M. Singh, and D. K. Bhattacharyya, “Efs-mi: an ensemble feature
selection method for classification,” Complex & Intelligent Systems, vol. 4, no. 2,
pp. 105–118, 2018.

[10] “Genomics — britannica.” https://www.britannica.com/science/genomics.
(Accessed on 06/08/2021).

[11] J. Hardin, G. P. Bertoni, and L. J. Kleinsmith, Becker’s World of the Cell,
eBook. Pearson Higher Ed, 2017.

152

[12] D. C. Wang and X. Wang, “Off-target genome editing: A new discipline of gene
science and a new class of medicine,” 2019.

[13] F. Alkan, A. Wenzel, C. Anthon, J. H. Havgaard, and J. Gorodkin, “Crispr-cas9
off-targeting assessment with nucleic acid duplex energy parameters,” Genome
biology, vol. 19, no. 1, pp. 1–13, 2018.

[14] L. Pray, “Discovery of dna structure and function: Watson and crick,” Nature
Education, vol. 1, no. 1, 2008.

[15] T. Kirkwood, “Dna, mutations and aging,” Mutation Research/DNAging,
vol. 219, no. 1, pp. 1–7, 1989.

[16] R. O. Bak, N. Gomez-Ospina, and M. H. Porteus, “Gene editing on center
stage,” Trends in Genetics, vol. 34, no. 8, pp. 600–611, 2018.

[17] P. Liang, Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, X. Xie,
Y. Chen, Y. Li, et al., “Crispr/cas9-mediated gene editing in human tripronu-
clear zygotes,” Protein & cell, vol. 6, no. 5, pp. 363–372, 2015.

[18] M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth, J. Mianné, J.-B. Renaud,
S. Schneider-Maunoury, A. Shkumatava, L. Teboul, J. Kent, et al., “Evaluation
of off-target and on-target scoring algorithms and integration into the guide rna
selection tool crispor,” Genome biology, vol. 17, no. 1, pp. 1–12, 2016.

[19] P. D. Hsu, D. A. Scott, J. A. Weinstein, F. A. Ran, S. Konermann, V. Agarwala,
Y. Li, E. J. Fine, X. Wu, O. Shalem, et al., “Dna targeting specificity of rna-
guided cas9 nucleases,” Nature biotechnology, vol. 31, no. 9, pp. 827–832, 2013.

[20] “sgrna scoring help.” https://portals.broadinstitute.org/gpp/public/software/sgrna-
scoring-help. (Accessed on 07/08/2021).

[21] G. Liu, Y. Zhang, and T. Zhang, “Computational approaches for effective crispr
guide rna design and evaluation,” Computational and structural biotechnology
journal, vol. 18, pp. 35–44, 2020.

[22] J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg, K. F. Donovan,
I. Smith, Z. Tothova, C. Wilen, R. Orchard, et al., “Optimized sgrna design
to maximize activity and minimize off-target effects of crispr-cas9,” Nature
biotechnology, vol. 34, no. 2, pp. 184–191, 2016.

[23] R. Singh, C. Kuscu, A. Quinlan, Y. Qi, and M. Adli, “Cas9-chromatin binding
information enables more accurate crispr off-target prediction,” Nucleic acids
research, vol. 43, no. 18, pp. e118–e118, 2015.

[24] M. Stemmer, T. Thumberger, M. del Sol Keyer, J. Wittbrodt, and J. L. Mateo,
“Cctop: an intuitive, flexible and reliable crispr/cas9 target prediction tool,”
PloS one, vol. 10, no. 4, p. e0124633, 2015.

[25] S.-J. Chen, “Minimizing off-target effects in crispr-cas9 genome editing,” 2019.

153

[26] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning
for big data processing,” EURASIP Journal on Advances in Signal Processing,
vol. 2016, no. 1, pp. 1–16, 2016.

[27] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[28] T. M. Mitchell et al., “Machine learning,” 1997.

[29] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx, Regression. Springer, 2007.

[30] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[31] M. Martin, “On-line support vector machine regression,” in European Confer-
ence on Machine Learning, pp. 282–294, Springer, 2002.

[32] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statis-
tics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[33] M. Hofmann, “Support vector machines-kernels and the kernel trick,” Notes,
vol. 26, no. 3, pp. 1–16, 2006.

[34] F. Burba, F. Ferraty, and P. Vieu, “k-nearest neighbour method in functional
nonparametric regression,” Journal of Nonparametric Statistics, vol. 21, no. 4,
pp. 453–469, 2009.

[35] S. Kohli, G. T. Godwin, and S. Urolagin, “Sales prediction using linear and knn
regression,” in Advances in Machine Learning and Computational Intelligence,
pp. 321–329, Springer, 2021.

[36] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university
press, 1995.

[37] P. Blunsom and A. Calinescu, “Machine learning.”
https://www.cs.ox.ac.uk/teaching/courses/2021-2022/ml/. (Accessed on
10/08/2021).

[38] S. Sonoda and N. Murata, “Neural network with unbounded activation func-
tions is universal approximator,” Applied and Computational Harmonic Anal-
ysis, vol. 43, no. 2, pp. 233–268, 2017.

[39] L. Noriega, “Multilayer perceptron tutorial,” School of Computing. Stafford-
shire University, 2005.

[40] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global min-
ima of deep neural networks,” in International Conference on Machine Learn-
ing, pp. 1675–1685, PMLR, 2019.

[41] S. Saha, “A comprehensive guide to convolutional neural net-
works — the eli5 way — by sumit saha — towards data science.”
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53. (Accessed on 11/08/2021).

154

[42] A. S. Mubarak, A. Süleyman, O. Mehmet, et al., “Development of cnn model
for prediction of crispr/cas12 guide rna activity,” in International Conference
on Theory and Application of Soft Computing, Computing with Words and
Perceptions, pp. 697–703, Springer, 2019.

[43] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network,” Physica D: Nonlinear Phenomena,
vol. 404, p. 132306, 2020.

[44] sey kh, “Gru recurrent network.” https://gist.github.com/sey-
kh/34cd13a4139b30776ff697b431c3c370. (Accessed on 11/08/2021).

[45] Z. Shen, W. Bao, and D.-S. Huang, “Recurrent neural network for predicting
transcription factor binding sites,” Scientific reports, vol. 8, no. 1, pp. 1–10,
2018.

[46] Y. Deng, L. Wang, H. Jia, X. Tong, and F. Li, “A sequence-to-sequence deep
learning architecture based on bidirectional gru for type recognition and time
location of combined power quality disturbance,” IEEE Transactions on Indus-
trial Informatics, vol. 15, no. 8, pp. 4481–4493, 2019.

[47] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,”
ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3,
pp. 1–27, 2011.

[48] H. Guo and S. B. Gelfand, “Analysis of gradient descent learning algorithms for
multilayer feedforward neural networks,” in 29th IEEE Conference on Decision
and Control, pp. 1751–1756, IEEE, 1990.

[49] C. Bauckhage and D. Speicher, “Lecture notes on machine learning neurons
with non-monotonic activation functions,” cal, vol. 5, p. 4, 1943.

[50] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights,” in 1990 IJCNN
International Joint Conference on Neural Networks, pp. 21–26, IEEE, 1990.

[51] I. K. M. Jais, A. R. Ismail, and S. Q. Nisa, “Adam optimization algorithm
for wide and deep neural network,” Knowledge Engineering and Data Science,
vol. 2, no. 1, pp. 41–46, 2019.

[52] U. Ruby and V. Yendapalli, “Binary cross entropy with deep learning tech-
nique for image classification,” International Journal of Advanced Trends in
Computer Science and Engineering, vol. 9, no. 10, 2020.

[53] S. S. Durbha, R. L. King, and N. H. Younan, “Support vector machines regres-
sion for retrieval of leaf area index from multiangle imaging spectroradiometer,”
Remote sensing of environment, vol. 107, no. 1-2, pp. 348–361, 2007.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International conference on machine
learning, pp. 448–456, PMLR, 2015.

155

[55] S. Abadi, W. X. Yan, D. Amar, and I. Mayrose, “A machine learning approach
for predicting crispr-cas9 cleavage efficiencies and patterns underlying its mech-
anism of action,” PLoS computational biology, vol. 13, no. 10, p. e1005807, 2017.

[56] L. Myers and M. J. Sirois, “Spearman correlation coefficients, differences be-
tween,” Encyclopedia of statistical sciences, vol. 12, 2004.

[57] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, genetic
algorithm: a big comparison for nas,” arXiv preprint arXiv:1912.06059, 2019.

[58] T. T. Joy, S. Rana, S. Gupta, and S. Venkatesh, “Hyperparameter tuning for
big data using bayesian optimisation,” in 2016 23rd International Conference
on Pattern Recognition (ICPR), pp. 2574–2579, IEEE, 2016.

[59] G. Jiang and W. Wang, “Error estimation based on variance analysis of k-fold
cross-validation,” Pattern Recognition, vol. 69, pp. 94–106, 2017.

[60] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” in Proceedings of the 31st international conference on neural information
processing systems, pp. 4768–4777, 2017.

[61] C. Molnar, “5.10 shapley values — interpretable machine learning.”
https://christophm.github.io/interpretable-ml-book/shapley.html. (Accessed
on 12/08/2021).

[62] L. Ibrahim, M. Mesinovic, K.-W. Yang, and M. A. Eid, “Explainable prediction
of acute myocardial infarction using machine learning and shapley values,”
IEEE Access, vol. 8, pp. 210410–210417, 2020.

[63] J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan, “L-shapley and c-
shapley: Efficient model interpretation for structured data,” arXiv preprint
arXiv:1808.02610, 2018.

[64] R. Polikar, “Ensemble learning,” in Ensemble machine learning, pp. 1–34,
Springer, 2012.

[65] M. Autenrieth, R. A. Levine, J. Fan, M. A. Guarcello, et al., “Stacked ensem-
ble learning for propensity score methods in observational studies,” Journal of
Educational Data Mining, vol. 13, no. 1, pp. 24–189, 2021.

[66] F. Divina, A. Gilson, F. Goméz-Vela, M. Garćıa Torres, and J. F. Torres,
“Stacking ensemble learning for short-term electricity consumption forecast-
ing,” Energies, vol. 11, no. 4, p. 949, 2018.

[67] S. W. Cho, S. Kim, Y. Kim, J. Kweon, H. S. Kim, S. Bae, and J.-S. Kim,
“Analysis of off-target effects of crispr/cas-derived rna-guided endonucleases
and nickases,” Genome research, vol. 24, no. 1, pp. 132–141, 2014.

[68] R. L. Frock, J. Hu, R. M. Meyers, Y.-J. Ho, E. Kii, and F. W. Alt, “Genome-
wide detection of dna double-stranded breaks induced by engineered nucleases,”
Nature biotechnology, vol. 33, no. 2, pp. 179–186, 2015.

156

[69] S. Q. Tsai, Z. Zheng, N. T. Nguyen, M. Liebers, V. V. Topkar, V. Thapar,
N. Wyvekens, C. Khayter, A. J. Iafrate, L. P. Le, et al., “Guide-seq enables
genome-wide profiling of off-target cleavage by crispr-cas nucleases,” Nature
biotechnology, vol. 33, no. 2, pp. 187–197, 2015.

[70] D. Kim, B. Langmead, and S. L. Salzberg, “Hisat: a fast spliced aligner with
low memory requirements,” Nature methods, vol. 12, no. 4, pp. 357–360, 2015.

[71] X. Wang, Y. Wang, X. Wu, J. Wang, Y. Wang, Z. Qiu, T. Chang, H. Huang, R.-
J. Lin, and J.-K. Yee, “Unbiased detection of off-target cleavage by crispr-cas9
and talens using integrase-defective lentiviral vectors,” Nature biotechnology,
vol. 33, no. 2, pp. 175–178, 2015.

[72] F. A. Ran, L. Cong, W. X. Yan, D. A. Scott, J. S. Gootenberg, A. J. Kriz,
B. Zetsche, O. Shalem, X. Wu, K. S. Makarova, et al., “In vivo genome editing
using staphylococcus aureus cas9,” Nature, vol. 520, no. 7546, pp. 186–191,
2015.

[73] D. Kim, S. Kim, S. Kim, J. Park, and J.-S. Kim, “Genome-wide target speci-
ficities of crispr-cas9 nucleases revealed by multiplex digenome-seq,” Genome
research, vol. 26, no. 3, pp. 406–415, 2016.

[74] M. Haeussler, “maximilianh/crisporwebsite: All source code of the crispor.org
website.” https://github.com/maximilianh/crisporWebsite. (Accessed on
14/08/2021).

[75] J. Listgarten, M. Weinstein, B. P. Kleinstiver, A. A. Sousa, J. K. Joung,
J. Crawford, K. Gao, L. Hoang, M. Elibol, J. G. Doench, et al., “Prediction
of off-target activities for the end-to-end design of crispr guide rnas,” Nature
biomedical engineering, vol. 2, no. 1, pp. 38–47, 2018.

[76] J. Lin, Z. Zhang, S. Zhang, J. Chen, and K.-C. Wong, “Crispr-net: A recurrent
convolutional network quantifies crispr off-target activities with mismatches
and indels,” Advanced Science, vol. 7, no. 13, p. 1903562, 2020.

[77] G. Zhang, Z. Dai, and X. Dai, “C-rnncrispr: Prediction of crispr/cas9 sgrna
activity using convolutional and recurrent neural networks,” Computational and
structural biotechnology journal, vol. 18, pp. 344–354, 2020.

[78] C. R. Pernet, R. R. Wilcox, and G. A. Rousselet, “Robust correlation analyses:
false positive and power validation using a new open source matlab toolbox,”
Frontiers in psychology, vol. 3, p. 606, 2013.

[79] A. Newman, L. Starrs, and G. Burgio, “Cas9 cuts and consequences; detecting,
predicting, and mitigating crispr/cas9 on-and off-target damage: Techniques
for detecting, predicting, and mitigating the on-and off-target effects of cas9
editing,” BioEssays, vol. 42, no. 9, p. 2000047, 2020.

[80] Y. Gao, G. Chuai, W. Yu, S. Qu, and Q. Liu, “Data imbalance in crispr off-
target prediction,” Briefings in bioinformatics, vol. 21, no. 4, pp. 1448–1454,
2020.

157

